ОФНЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

Detection of terahertz radiation with the p-n graphene grid

Код статьи
S3034641XS0044451025080097-1
DOI
10.7868/S3034641X25080097
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 168 / Номер выпуска 2
Страницы
208-214
Аннотация
We developed a cryogenic graphene detector for the sub-THz range. Two types of detection operation are envisaged: the bolometeric and the photovoltaic. We find that the leading mode of operation is bolometric. The epitaxial graphene on SiC used in the detector has a strong temperature-dependent weak localization correction to the conductance below 25 K. The sub-THz radiation elevates the temperature of the electron system in the graphene, and thus suppresses the weak localization. No photovoltaic effect is detected. The responsivity of the detector reaches ∼1⋅10 A/W below 1 K.
Ключевые слова
Дата публикации
01.08.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
6

Библиография

  1. 1. T. Low and P. Avouris, Graphene Plasmonics for Terahertz to Mid-Infrared Applications, ACS Nano 8, 1086 (2014).
  2. 2. P. Rufangura, T. G. Folland, A. Agrawal et al., Towards Low- Loss On-Chip Nanophotonics With Coupled Graphene and Silicon Carbide: A Review, J. Phys.: Materials 3, 032005 (2020).
  3. 3. Q. Guo, C. Li, B. Deng et al., Infrared Nanophotonics Based on Graphene Plasmonics, ACS Photonics 4, 2989 (2017).
  4. 4. M. B. Lundeberg, Yu. Gao, A. Woessner et al., Thermoelectric Detection and Imaging of Propagating Graphene Plasmons, Nature Materials 16, 204 (2016).
  5. 5. F. Xia, T. Mueller, R. Golizadeh-Mojarad et al., Photocurrent Imaging and Efficient Photon Detection in a Graphene Transistor, Nano Lett. 9, 1039 (2009).
  6. 6. T. Mueller, F. Xia and P. Avouris, Graphene Photodetectors for High-Speed Optical Communications, Nature Photonics 4, 297 (2010).
  7. 7. V. Eless, T. Yager, S. Spasov et al., Phase Coherence and Energy Relaxation in Epitaxial Graphene Under Microwave Radiation, Appl. Phys. Lett. 103, 093103 (2013).
  8. 8. A. Fujimoto, C. J. Perini, D. Terasawa et al., Disorder and Weak Localization Near Charge Neutral Point in Ti-cleaned Single-Layer Graphene, Phys. St. Sol. (B) 256, 1800541 (2019).
  9. 9. E. McCann, K. Kechedzhi, V. I. Fal'ko et al., Weak-Localization Magnetoresistance and Valley Symmetry in Graphene, Physical Review Letters 97, 146805 (2006).
  10. 10. R. Somphonsane, H. Ramamoorthy, G. He et al., Universal Scaling of Weak Localization in Graphene Due to Bias-Induced Dispersion Decoherence, Sci. Rep. 10, 5611 (2020).
  11. 11. S. Lara-Avila, A. Tzalenchuk, S. Kubatkin et al., Disordered Fermi Liquid in Epitaxial Graphene from Quantum Transport Measurements, Phys. Rev. Lett. 107, 166602 (2011).
  12. 12. A. El Fatimy, R. Myers-Ward, A. Boyd et al. Epitaxial Graphene Quantum Dots for High-Performance Terahertz Bolometers, Nature Nanotech 11, 335 (2016).
  13. 13. A. El Fatimy, P. Han, N. Quirk et al. Effect of Defect-Induced Cooling on Graphene Hot-Electron Bolometers, Carbon 154, 497 (2019).
  14. 14. A. El Fatimy, A. Nath, B. D. Kong et al., Ultra-Broadband Photodetectors Based on Epitaxial Graphene Quantum Dots, Nanophotonics 7, 735 (2018).
  15. 15. P. Kleinschmidt, S. Giblin, A. Ya. Tzalenchuk at al., Sensitive Detector for a Passive Terahertz Imager, J. Appl. Phys. 99, 114504 (2006).
  16. 16. D. Bandurin, D. Svintsov, I. Gayduchenko et al., Resonant Terahertz Detection Using Graphene Plasmons, Nature Communications 9, 5392 (2018).
  17. 17. D. Mylnikov and D. Svintsov, Limiting Capabilities of Two-Dimensional Plasmonics in Electromagnetic Wave Detection, Phys. Rev. App. 17, 064055 (2022).
  18. 18. P. Ma, Ya. Salamin, B. Baeuerle et al., Plasmonically Enhanced Graphene Photodetector Featuring 100 Gbit/s Data Reception, High Responsivity, and Compact Size, ACS Photonics 6, 154 (2018).
  19. 19. Y. C. Cheng and U. Schwingenschlogl, A Route to Strong -Doping of Epitaxial Graphene on SiC, Appl. Phys. Lett. 97, 193304 (2010).
  20. 20. F. Ludwig, A. Generalov, J. Holstein et al., Terahertz Detection with Graphene FETs: Photothermoelectric and Resistive Self-Mixing Contributions to the Detector Response, ACS Appl. Electron. Mat. 6, 2197 (2024).
  21. 21. X. Cai, A. B. Sushkov, R. J. Suess et al., Sensitive Room-Temperature Terahertz Detection via the Photothermoelectric Effect in Graphene, Nature Nanotechnology 9, 814 (2014).
  22. 22. X. Xu, N. M. Gabor, J. S. Alden et al., Photo-Thermoelectric Effect at a Graphene Interface Junction, Nano Let. 10, 562 (2009).
  23. 23. S. Castilla, B. Terres, M. Autore et al., Fast and Sensitive Terahertz Detection Using an Antenna-Integrated Graphene pn Junction, Nano Lett. 19, 2765 (2019).
  24. 24. N. M. Gabor, J. C. W. Song, Q. Ma et al., Hot Carrier-Assisted Intrinsic Photoresponse in Graphene, Science 334, 648 (2011).
  25. 25. J. A. Alexander-Webber, J. Huang, D. K. Maude, at al., Giant Quantum Hall Plateaus Generated by Charge Transfer in Epitaxial Graphene, Sci. Rep. 6, 30296 (2016).
  26. 26. Long Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, F. Wang, Graphene Plasmonics for Tunable Terahertz Metamaterials, Nature Nanotechnology 6, 630 (2011).
  27. 27. J. C. W. Song, M. S. Rudner, C. M. Marcus, and L. S. Levitov, Hot Carrier Transport and Photocurrent Response in Graphene, Nano Lett. 11, 4688 (2011).
  28. 28. E. H. Hwang, E. Rossi, and S. Das Sarma, Theory of Thermopower in Two-Dimensional Graphene, Phys. Rev. B 80, 235415 (2009).
  29. 29. T. A. Elkhatib, V. Yu. Kachorovskii, W. J. Stillman et al., Enhanced Plasma Wave Detection of Terahertz Radiation Using Multiple High Electron-Mobility Transistors Connected in Series, IEEE Transactions on Microwave Theory and Techniques 58, 331 (2010).
  30. 30. T. J. Echtermeyer, L. Britnell, P. K. Jasnos et al., Strong Plasmonic Enhancement of Photovoltage in Graphene, Nature Communications 2, 458 (2011).
  31. 31. E. G. Mishchenko, A. V. Shytov and P. G. Silvestrov, Guided Plasmons in Graphene p-n Junctions, Phys. Rev. Lett. 104, 156806 (2010).
  32. 32. G. Giovannetti, P. A. Khomyakov, G. Brocks et al., Doping Graphene with Metal Contacts, Phys. Rev. Lett. 101, 026803 (2008).
  33. 33. F. Xia, V. Perebeinos, Yu. Lin et al., THE Origins and Limits of Metal-graphene Junction Resistance, Nature Nanotechnology 6, 179 (2011).
  34. 34. T. Cusati, G. Fiori, A. Gahoi et al., Electrical Properties of Graphene-Metal Contacts, Sci. Rep. 7, 5109 (2017).
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека