RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

FIELD GENERALIZATION OF ELLIPTIC CALOGERO – MOSER SYSTEM IN THE FORM OF HIGHER RANK LANDAU – LIFSHITZ MODEL

PII
S3034641X25100036-1
DOI
10.7868/S3034641X25100036
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 168 / Issue number 4
Pages
476-484
Abstract
We prove gauge equivalence between integrable field generalization of the elliptic Calogero–Moser model and the higher rank XYZ Landau–Lifshitz model of vector type on 1+1 dimensional space-time. Explicit formulae for the change of variables are derived, thus providing the Poisson map between these models.
Keywords
Date of publication
15.10.2025
Year of publication
2025
Number of purchasers
0
Views
58

References

  1. 1. L. D. Landau and E. M. Lifshitz, Phys. Zs. Sowjet. 8, 153 (1935).
  2. 2. E. K. Sklyanin, Preprint LOMI E-3-79, Leningrad (1979).
  3. 3. E. K. Sklyanin, Questions of Quantum Field Theory and Statistical Physics, Part 6, Zap. Nauchn. Sem. LOMI 150, 154 (1986).
  4. 4. L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Springer-Verlag, Berlin (1987).
  5. 5. V. E. Zakharov and A. B. Shabat, Sov. Phys. JETP 34, 62 (1972).
  6. 6. V. E. Zakharov and A. B. Shabat, Funct. Anal. Appl. 8, 226 (1974).
  7. 7. V. E. Zakharov and A. B. Shabat, Funct. Anal. Appl. 13, 166 (1979).
  8. 8. I. Krichever, Commun. Math. Phys. 229, 229 (2002); arXiv:hep-th/0108110.
  9. 9. A. Levin, M. Olshanetsky, and A. Zotov, Commun. Math. Phys. 236, 93 (2003); arXiv:nlin/0110045.
  10. 10. A. V. Zotov and A. V. Smirnov, Theor. Math. Phys. 177, 1281 (2013).
  11. 11. K. Atalikov and A. Zotov, JETP Lett. 117, 630 (2023); arXiv:2303.08020 [hep-th].
  12. 12. R. J. Baxter, Ann. Phys. 76, 25 (1973).
  13. 13. F. Calogero, Lett. Nuovo Cim. 13, 411 (1975).
  14. 14. J. Moser, Adv. Math. 16, 1 (1975).
  15. 15. M. A. Olshanetsky and A. M. Perelomov, Phys. Rep. 71, 313 (1981).
  16. 16. I.M. Krichever, Funct. Anal. Appl. 14, 282 (1980).
  17. 17. A. A. Akhmetshin, I. M. Krichever, and Y. S. Volvovski, Funct. Anal. Appl. 36, 253 (2002); arXiv:hep-th/0203192.
  18. 18. A. Zotov, J. Phys. A 57, 315201 (2024); arXiv:2404.01898 [hep-th].
  19. 19. K. Atalikov and A. Zotov, JETP Lett. 115, 757 (2022); arXiv:2204.12576 [math-ph].
  20. 20. M. Jimbo, T. Miwa, and M. Okado, Nucl. Phys. B 300, 74 (1988).
  21. 21. K. Atalikov and A. Zotov, Theoret. and Math. Phys. 219, 1004 (2024); arXiv:2403.00428 [hep-th].
  22. 22. K. Atalikov and A. Zotov, J. Geom. Phys. 164, 104161 (2021); arXiv:2010.14297 [hep-th].
  23. 23. A. G. Reiman and M. A. Semenov-Tian-Shansky, Zap. Nauchn. Sem. LOMI 150, 104 (1986).
  24. 24. A. V. Zotov, SIGMA 7, 067 (2011); arXiv:1012.1072 [math-ph].
  25. 25. A. Zabrodin and A. Zotov, JHEP 07, (2022) 023; arXiv: 2107.01697 [math-ph].
  26. 26. A. Belavin and V. Drinfeld, Funct. Anal. Appl. 16, (1982) 159.
  27. 27. A. Levin, M. Olshanetsky, and A. Zotov, JHEP 07, (2014) 012, arXiv:1405.7523 [hep-th].
  28. 28. A. Levin, M. Olshanetsky, and A. Zotov, J. Phys. A: Math. Theor. 49, (2016) 395202; arXiv:1603.06101 [math-ph].
  29. 29. M. Vasilyev and A. Zotov, Rev. Math. Phys. 31, (2019) 1930002; arXiv:1804.02777 [math-ph]
  30. 30. A. Zotov, Funct. Anal. Its. Appl. 59, (2025) 142; arXiv:2407.13854 [nlin.SI].
  31. 31. D. Domanevsky, A. Levin, M. Olshanetsky, and A. Zotov, Izvestiya: Mathematics (2026) to appear; arXiv:2501.08777 [math-ph].
  32. 32. A. Levin, M. Olshanetsky, and A. Zotov, Eur. Phys. J. C 82, 635 (2022); arXiv:2202.10106 [hep-th].
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library