ОФНЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

СТАТИСТИКА ДВУХАТОМНЫХ КЛАСТЕРОВ, ОБРАЗУЮЩИХСЯ ПРИ ТРОЙНЫХ СТОЛКНОВЕНИЯХ В ОДНОАТОМНОМ ГАЗЕ

Код статьи
S3034641X25060021-1
DOI
10.7868/S3034641X25060021
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 167 / Номер выпуска 6
Страницы
769-781
Аннотация
Численно смоделированы трехатомные столкновения внутри ячейки с однокомпонентным горячим газом. Каждое столкновение описывается законами классической механики, в которых атомы движутся под действием сил Ван дер Ваальса. Симуляция динамики во время таких столкновений позволила пронаблюдать процесс формирования устойчивых ван-дер-ваальсовых кластеров, в которых пары атомов не разлетаются после столкновения, а совершают финитное движение. Такие события происходят редко, но регулярно. Слабая связь внутри кластера разрушается при следующем столкновении. Многократно моделируя тройное столкновение со случайными скоростями и координатами, мы собрали статистику случаев, при которых формируется двухатомный кластер. Затем на основе получившейся статистики были построены гистограммы их кинематических параметров. Продемонстрировано, что в газе образуются два типа кластеров, которые отличаются характером относительного движения. Также была оценена концентрация устойчивых ван-дер-ваальсовых кластеров в газе при температуре 304 К и давлении 1 торр.
Ключевые слова
Дата публикации
16.06.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
33

Библиография

  1. 1. Е. Б. Александров и А. К. Вершовский, УФН 179, 605 (2009).
  2. 2. A. Fabricant, I. Novikova, and G. Bison, New J. Phys. 25, 025001 (2023).
  3. 3. S. Kobtsev, D. Radnatarov, S. Khripunov, I. Popkov, V. Andryushkov, and T. Steshchenko, J. Opt. Soc. Am. B 36, 2700 (2019).
  4. 4. Y.-Y. Jau, A. Post, N. Kuzma, A. Braun, M. Romalis, and W. Happer, Phys. Rev. Lett. 92, 110801 (2004).
  5. 5. T. Walker and W. Happer, Rev. Mod. Phys. 69, 629 (1997).
  6. 6. W. Happer, E. Miron, S. Schaefer, D. Schreiber, W. A. van Wijngaarden, and X. Zeng, Phys. Rev. A 29, 3092 (1984).
  7. 7. T. Walker, Phys. Rev. A 40, 4959 (1989).
  8. 8. Y. Jau, N. Kuzma, and W. Happer, Phys. Rev. A 69, 061401 (2004).
  9. 9. C. H. Volk, T. M. Kwon, J. G. Mark, Y. B. Kim, and J. C. Woo, Phys. Rev. Lett. 44, 136 (1980).
  10. 10. L. Chen and Y. Ren, Appl. Opt. 59, 3967 (2020).
  11. 11. Е. В. Ахматская, Л. А. Пожар, Ж . вычисл. матем. и матем. физ. 26, 620 (1986).
  12. 12. Дж. Ферцигер, Г. Капер, Математическая теория процессов переноса в газах, Мир, Москва (1976).
  13. 13. А. Я. Эндер, И. А. Эндер, Интеграл столкновений уравнения Больцмана и моментный метод, Изд-во СПбГУ, Санкт-Петербург (2003).
  14. 14. M. Green, Phys. Rev. 136, A905 (1964).
  15. 15. W. Hoegy and J. Sengers, Phys. Rev. A 2, 2461 (1970).
  16. 16. H. Janssens, M. Vanmarcke, E. Desoppere, R. Boucique, and W. Wieme, J. Chem. Phys. 86, 4935 (1987).
  17. 17. A. Bonasera and F. Gulminelli, Phys. Lett. B 259, 399 (1991).
  18. 18. A. Deshmukh, R. Stewart, P. Shen, J. Booth, and K. Madison, Phys. Rev. A 109, 032818 (2024).
  19. 19. Yu. Khlopkov, Zay Yar Myo Myint, and A. Khlopkov, Indian J. Phys. Chem. 9, 137 (2014).
  20. 20. B. M. Axilrod and E. Teller, J. Chem. Phys. 11, 299 (1943).
  21. 21. И. Г. Каплан, Введение в теорию межмолекулярных взаимодействий, Наука, Москва (1982).
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека