- Код статьи
- S0044451025050049-1
- DOI
- 10.31857/S0044451025050049
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 167 / Номер выпуска 5
- Страницы
- 645-671
- Аннотация
- Технологии, связанные с ультратонкими пленками, имеют важное значение для микроэлектроники. В этой связи много внимания обращают на механические и оптические свойства пленок. В настоящей работе исследованы пленки никеля на подложке из стекла. Обнаружен неожиданный эффект прозрачности пленок для света с пропусканием 1–10% падающего излучения. При этом пленки, во-первых, имеют толщину достаточно большую по сравнению с толщиной скин-слоя 12–13 нм (поэтому такое пропускание названо аномальным), во-вторых, сохраняют свои упругие механические характеристики, которые не отличаются от свойств абсолютно однородных пленок с фиксированной толщиной. Соответственно, наши пленки действуют стандартно в качестве акустических резонаторов и в качестве излучателей акустических волн в подложку (трансдьюсеров). Аномальное пропускание света объясняется неоднородной структурой пленки. При этом пропускание света позволяет видеть через пленку бриллюэновские интерференционные осцилляции, связанные с распространением акустических волн в подложке.
- Ключевые слова
- Дата публикации
- 16.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 11
Библиография
- 1. C. Thomsen, J. Strait, Z. Vardeny, H. J. Maris, J. Tauc, and J. J. Hauser, Coherent Phonon Generation and Detection by Picosecond Light Pulses, Phys. Rev. Lett. 53, 989 (1984).
- 2. O. Matsuda, M. C. Larciprete, R. Li Voti, and O. B. Wright, Fundamentals of Picosecond Laser Ultrasonics, Ultrasonics 56, 3 (2015).
- 3. T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. A. Wolff, Extraordinary Optical Transmission through Subwavelength Hole Arrays, Nature 391, 667 (1998).
- 4. J. V. Coe, J. M. Heer, S. Teeters-Kennedy, H. Tian, and K. R. Rodriguez, Extraordinary Transmission of Metal Films with Arrays of Subwavelength Holes, Ann. Rev. Phys. Chem. 59, 179 (2008).
- 5. E. Popov and N. Bonod, Physics of Extraordinary Transmission through Subwavelength Hole Arrays, in Structured Surfaces as Optical Metamaterials, Cambridge Univ. Press (2011), Ch. 1.
- 6. M. Tavakoli, Y. S. Jalili, and Se. M. Elahi, Rayleigh-Wood Anomaly Approximation with FDTD Simulation of Plasmonic Gold Nanohole Array for Determination of Optimum Extraordinary Optical Transmission Characteristics, Superlattices Microstruct. 130, 454 (2019).
- 7. H. A. Bethe, Theory of Diffraction by Small Holes, Phys. Rev. 66, 163 (1944).
- 8. Л. Д. Ландау, Е. М. Лифшиц, Электродинамика сплошных сред, ФИЗМАТЛИТ, Москва (2005).
- 9. H. Zhang, A. Antoncecchi, S. Edward, I. Setija, P. Planken, and S. Witte, Unraveling Phononic, Optoacoustic, and Mechanical Properties of Metals with Light-Driven Hypersound, Phys. Rev. Appl. 13, 014010 (2020).
- 10. G. de Haan, T. J. van den Hooven, and P. C. M. Planken, Ultrafast Laser-Induced Strain Waves in Thin Ruthenium Layers, Opt. Express 29, 32051 (2021).
- 11. A. Devos and R. Cˆote, Strong Oscil lations Detected by Picosecond Ultrasonics in Silicon: Evidence for an Electronic-Structure Effect, Phys. Rev. B 297, 125208 (2004).
- 12. E. Tzianaki, M. Bakarezos, G. D. Tsibidis, Y. Orphanos, P. A. Loukakos, C. Kosmidis, P. Patsalas, M. Tatarakis, and N. A. Papadogiannis, High Acoustic Strains in Si Through Ultrafast Laser Excitation of Ti Thin-Film Transducers, Opt. Express 23, 17191 (2015).
- 13. Н. А. Иногамов, В. А. Хохлов, С. А. Ромашевский, Ю. В. Петров, М. А. Овчинников, С. И. Ашитков, Сильное возбуждение электронной подсистемы золота ультракоротким лазерным импульсом и процессы релаксации около температуры плавления, ЖЭТФ 165, 165 (2024).
- 14. D. P. Blair and P. H. Sydenham, Phase Sensitive Detection as a Means to Recover Signals Buried in Noise, J. Phys. E 8, 621 (1975).
- 15. Zurich instruments. White Paper: Principles of Lockin Detection and the State of the Art, (2016).
- 16. В. А. Хохлов, С. А. Ромашевский, С. И. Ашитков, Н. А. Иногамов, Синхронное детектирование нелинейных явлений в оптоакустических осцилляциях нанопленки, инициированных фемтосекундным лазерным импульсом, Письма в ЖЭТФ 120, 550 (2024) [V. A. Khokhlov, S. A. Romashevskiy, S. I. Ashitkov, and N. A. Inogamov, Synchronous Detection of Nonlinear Phenomena in Opto-Acoustic Vibrations Induced in a Nanofilm by a Femtosecond Laser Pulse, JETP Lett. 120, 531 (2024)].
- 17. Л. Д. Ландау, Е. М. Лифшиц, Гидродинамика, ФИЗМАТЛИТ, Москва (2021).
- 18. V. V. Shepelev, Yu. V. Petrov, N. A. Inogamov, V. V. Zhakhovsky, E. A. Perov, and S. V. Fortova, Attenuation and Inflection of Initial ly Planar Shock Wave Generated by Femtosecond Laser Pulse, Opt. Laser Technol. 152, 108100 (2022).
- 19. https://refractiveindex.info/.
- 20. P. B. Johnson and R. W. Christy, Optical Constants of Transition Metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd., Phys. Rev. B 9, 5056 (1974).
- 21. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, Optical Properties of Au, Ni, And Pb At Submil limeter Wavelengths, Appl. Opt. 26, 744 (1987).
- 22. W. M. Haynes (Ed.), CRC Handbook of Chemistry and Physics (97th ed.), CRC Press (2016).
- 23. A. A. Samarskii, The Theory of Difference Schemes, CRC Press (2001).
- 24. М. И. Каганов, И. М. Лифшиц, Л. В. Таната-ров, Релаксация между электронами и решеткой, ЖЭТФ 31, 232 (1956) [M. I. Kaganov, I. M. Lifshitz, and L. V. Tanatarov, Relaxation Between Electrons and the Crystalline Lattice, Sov. Phys. JETP 4, 173 (1957)].
- 25. М. И. Каганов, И. М. Лифшиц, М. Я. Азбель, Электронная теория металлов, Наука, Москва (1971).
- 26. С. И. Анисимов, Б. Л. Капелиович, Т. Л. Перельман, Электронная эмиссия с поверхности металлов под действием ультракоротких лазерных импульсов, ЖЭТФ 66, 776 (1974) @@ S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, Electron Emission from Metal Surfaces Exposed to Ultrashort Laser Pulses, Sov. Phys. JETP 39, 375 (1974)
- 27. A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. O. Levchenko, A. A. Rudenko, I. N. Saraeva, D. A. Zayarny, C. R. Nathala, and W. Husinsky, Nanoscale Surface Boiling in Sub-Threshold Damage and Above-Threshold Spallation of Bulk Aluminum and Gold by Single Femtosecond Laser Pulses, Laser Phys. Lett. 13, 025603 (2016).
- 28. S. I. Kudryashov, A. A. Samokhvalov, Ya. D. Golubev, D. S. Ivanov, M. E. Garcia, V. P. Veiko, B. Rethfeld, and V. Yu. Mikhailovskii, Dynamic Al l-Optical Control in Ultrashort Double-Pulse Laser Ablation, Appl. Surf. Sci. 537, 147940 (2021).
- 29. С. Г. Бежанов, А. А. Ионин, А. П. Канавин и др., ЖЭТФ 147, 1087 (2015) [S. G. Bezhanov, A. A. Ionin, A. P. Kanavin et al., Reflection of a Probe Pulse and Thermal Emission of Electrons Produced by an Aluminum Film Heated by a Femtosecond Laser Pulse, JETP 120, 937 (2015)].
- 30. D. A. Zayarny, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Kuchmizhak, O. B. Vitrik, and Yu. N. Kulchin, Pulse-Width-Dependent Surface Ablation of Copper and Silver by Ultrashort Laser Pulses, Laser Phys. Lett. 13, 076101 (2016).
- 31. П. А. Данилов, С. И. Кудряшов, К. П. Мигдал, А. С. Ривнюк, А. А. Ионин, Усиление поглощения излучения интенсивных фемтосекундных лазерных импульсов видимого диапазона в пленке серебра, Письма в ЖЭТФ 113, 299 (2021) [P. A. Danilov, S. I. Kudryashov, K. P. Migdal, A. S. Rivnyuk, and A. A. Ionin, Enhancement of the Absorption of Intense Visible Femtosecond Laser Pulses in a Silver Film, JETP Lett. 113, 297 (2021)].
- 32. N. A. Inogamov, V. V. Zhakhovsky, S. I. Ashitkov, V. A. Khokhlov, V. V. Shepelev, P. S. Komarov, A. V. Ovchinnikov, D. S. Sitnikov, Yu. V. Petrov, M. B. Agranat, S. I. Anisimov, and V. E. Fortov, Laser Acoustic Probing of Two-Temperature Zone Created by Femtosecond Pulse, Contrib. Plasma Phys. 51, 367 (2011).
- 33. S. I. Anisimov, N. A. Inogamov, Yu. V. Petrov, V. A. Khokhlov, V. V. Zhakhovskii, K. Nishihara, M. B. Agranat, S. I. Ashitkov, and P. S. Komarov, Interaction of Short Laser Pulses with Metals at Moderate Intensities, Appl. Phys. A 92, 939 (2008).
- 34. V. A. Khokhlov, V. V. Zhakhovsky, K. V. Khishchenko, N. A. Inogamov, and S. I. Anisimov, Metal Film on Substrate: Dynamics Under Action of UltraShort Laser Pulse, J. Phys.: Conf. Ser. 774, 012100 (2016).
- 35. N. A. Inogamov, Yu. V. Petrov, V. V. Zhakhovsky, V. A. Khokhlov, B. J. Demaske, S. I. Ashitkov, K. V. Khishchenko, K. P. Migdal, M. B. Agranat, S. I. Anisimov, and V. E. Fortov, Two-Temperature Thermodynamic and Kinetic Proporties of Transition Metals Irradiated by Femtosecond Lasers, AIP Conf. Proc. 1464, 593 (2012).
- 36. Ю. В. Петров, Н. А. Иногамов, Снятие моттовского межзонного s-d-увеличения электросопротивления никеля и платины за счет возбуждения электронов фемтосекундным лазерным импульсом, Письма в ЖЭТФ 98, 316 (2013) [Yu. V. Petrov and N. A. Inogamov, Elimination of the Mott Interband s-d Enhancement of the Electrical Resistance of Nickel and Platinum Owing to the Excitation of Electrons by Femtosecond Laser Pulses, JETP Lett. 98, 278 (2013)].
- 37. А. В. Бушман, В. Е. Фортов, Модели уравнения состояния вещества, УФН 140, 177 (1983).
- 38. V. E. Fortov, K. V. Khishchenko, P. R. Levashov, and I. V. Lomonosov, Wide-Range Multi-Phase Equations of State for Metals, Nuclear Instr. Meth. Phys. Res. A 415, 604 (1998).
- 39. A. V. Bushman, G. I. Kanel’, A. L. Ni, and V. E. Fortov, Intense Dynamic Loading of Condensed Matter, Taylor & Francis, Washington, D.C. (1993).
- 40. K. V. Khishchenko, S. I. Tkachenko, P. R. Levashov, I. V. Lomonosov, and V. S. Vorobev, Metastable States of Liquid Tungsten Under Subsecond Wire Explosion, Int. J. Thermophys. 23, 1359 (2002).
- 41. К. В. Хищенко, Уравнение состояния магния в области высоких давлений, Письма в ЖТФ 30(19), 65 (2004).
- 42. I. V. Lomonosov, Multi-Phase Equation of State for Aluminum, Laser and Part. Beams 25, 567 (2007).
- 43. K. V. Khishchenko, Equation of State for Tungsten over a Wide Range of Densities and Internal Energies, J. Phys.: Conf. Ser. 653, 012081 (2015).
- 44. И. В. Ломоносов и С. В. Фортова, Широкодиапазонные полуэмпирические уравнения состояния вещества для численного моделирования высокоэнергетических процессов, ТВТ 55, 596 (2017).
- 45. K. V. Khichshenko, Equation of State of Sodium for Modeling of Shock-Wave Processes at High Pressures, Math. Montis. 40, 140 (2017).
- 46. Ю. В. Петров, Н. А. Иногамов, К. П. Мигдал, Теплопроводность и коэффициент электрон-ионного теплообмена в конденсированных средах с сильно возбужденной электронной подсистемой, Письма в ЖЭТФ 97, 24 (2013) @@ Yu. V. Petrov, N. A. Inogamov, and K. P. Migdal, Thermal Conductivity and the Electron-Ion Heat Transfer Coefficient in Condensed Media with a Strongly Excited Electron Subsystem, JETP Lett. 97, 20 (2013).
- 47. Yu. V. Petrov, N. A. Inogamov, K. P. Migdal, A. V. Mokshin, and B. N. Galimzyanov, ElectronIon Energy Exchange in Simple Metals in Ziman Approach, J. Phys.: Conf. Ser. 1556, 012005 (2020).
- 48. Yu. V. Petrov, N. A. Inogamov, V. A. Khokhlov, and K. P. Migdal, Electron Thermal Conductivity of Nickel and Aluminum in Solid and Liquid Phases in Two-Temperature States, J. Phys.: Conf. Ser. 1787, 012025 (2021).
- 49. Ю. В. Петров, К. П. Мигдал, Н. А. Иногамов, С. И. Анисимов, Процессы переноса в металле с горячими электронами, возбужденными лазерным импульсом, Письма в ЖЭТФ 104, 446 (2016) [Yu. V. Petrov, K. P. Migdal, N. A. Inogamov, and S. I. Anisimov, Transfer Processes in a Metal With Hot Electrons Excited by a Laser Pulse, JETP Lett. 104, 431 (2016)].
- 50. Yu. V. Petrov, K. P. Migdal, D. V. Knyazev, N. A. Inogamov, and P. R. Levashov, Transport Properties of Copper with Excited Electron Subsystem, J. Phys.: Conf. Ser. 774, 012103 (2016).
- 51. K. P. Migdal, Yu. V. Petrov, D. K. Il‘nitsky, V. V. Zhakhovsky, N. A. Inogamov, K. V. Khishchenko, D. V. Knyazev, and P. R. Levashov, Heat Conductivity of Copper in Two-Temperature State, Appl. Phys. A 122, 408 (2016).
- 52. N. A. Inogamov, V. A. Khokhlov, V. V. Zhakhovsky, and Yu. V. Petrov, Energy Redistribution Between Layers in Multi-Layered Target Heated by X-Ray Pulse, J. Phys.: Conf. Ser. 946, 012009 (2018).
- 53. Y. V. Petrov, N. A. Inogamov, A. V. Mokshin, and B. N. Galimzyanov, Electrical Resistivity and Thermal Conductivity of Liquid Aluminum in the Two-Temperature State, J. Phys: Conf. Ser. 946, 012096 (2018).
- 54. Yu. Petrov, K. Migdal, N. Inogamov, V. Khokhlov, D. Ilnitsky, I. Milov, N. Medvedev, V. Lipph, and V. Zhakhovsky, Ruthenium under Ultrafast Laser Excitation: Model and Dataset for Equation of State, Conductivity, and Electron-Ion Coupling, Data in Brief 28, 104980 (2020).
- 55. B. J. Demaske, V. V. Zhakhovsky, N. A. Inogamov, and I. I. Oleynik, Ultrashort Shock Waves in Nickel Induced by Femtosecond Laser Pulses, Phys. Rev. B 87, 054109 (2013).
- 56. M. M. Budzevich, V. V. Zhakhovsky, C. T. White, and I. I. Oleynik, Evolution of Shock-Induced Orientation-Dependent Metastable States in Crystal line Aluminum, Phys. Rev. Lett. 109, 125505 (2012).
- 57. V. Zhakhovsky, Yu. Kolobov, S. Ashitkov, N. Inogamov, I. Nelasov, S. Manokhin, V. Khokhlov, D. Ilnitsky, Yu. Petrov, A. Ovchinnikov, O. Chefonov, and D. Sitnikov, Shock-Induced Melting and Crystal lization in Titanium Irradiated by Ultrashort Laser Pulse, Phys. Fluids 35, 096104 (2023).
- 58. A. D. Raki, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices, Appl. Opt. 37, 5271 (1998).
- 59. E. Silaeva, L. Saddier, and J.-P. Colombier, Drude-Lorentz Model for Optical Properties of Photoexcited Transition Metals Under ElectronPhonon Nonequilibrium, Appl. Sci. 11, 9902 (2021).
- 60. Zh. Lin, L. V. Zhigilei, and V. Celli, ElectronPhonon Coupling and Electron Heat Capacity of Metals Under Conditions of Strong ElectronPhonon Nonequilibrium, Phys. Rev. B 77, 075133 (2008).
- 61. И. К. Кикоин, Таблицы физических величин. Атомиздат, Москва (1976).
- 62. https://en.wikipedia.org/wiki/nickel.
- 63. https://dpva.ru/.