FABRICATION AND STUDY OF THE p − Si/α − Si/Ag MEMRISTOR CROSSBAR ARRAY
Table of contents
Share
QR
Metrics
FABRICATION AND STUDY OF THE p − Si/α − Si/Ag MEMRISTOR CROSSBAR ARRAY
Annotation
PII
S004445102408011X-1
Publication type
Article
Status
Published
Authors
A. Samsonova 
Affiliation: Skolkovo Institute of Science and Technology
Pages
255-260
Abstract
Журнал экспериментальной и теоретической физики, FABRICATION AND STUDY OF THE p − Si/α − Si/Ag MEMRISTOR CROSSBAR ARRAY
Acknowledgment
We acknowledge support of Skoltech Next Generation Program, grant number 1-NGP-1064.
Received
13.08.2024
Number of purchasers
0
Views
22
Readers community rating
0.0 (0 votes)
Cite   Download pdf

References

1. J. J. Yang, D. B. Strukov, and D. R. Stewart, Memristive Devices for Computing, Nature Nanotechnology 8, 13 (2012).

2. Krestinskaya, A. P. James, and L. O. Chua, Neuromemristive Circuits for Edge Computing: A Review, IEEE Trans. on Neural Networks and Learning Systems 31, 4 (2020).

3. D. Marković, A. Mizrahi, D. Querlioz, and J. Grollier, Physics for Neuromorphic Computing, Nature Rev. Phys. 2, 499 (2020).

4. R. Yang, P. Gao, S. Gaba, et al., Observation of Conducting Filament Growth in Nanoscale Resistive Memories, Nature Commun. 3, 732 (2012).

5. V. Emelyanov, K. .E. Nikiruy, V. A. Demin, et al., Yttria-Stabilized Zirconia Cross-Point Memristive Devices for Neuromorphic Applications, Microelectronic Engineering 215, 110988 (2019) 6. J. Woo and S. Yu, Resistive Memory-Based Analog Synapse: The Pursuit for Linear and Symmetric Weight Update, IEEE Nanotechnology Magazine 12, 36 (2018)

6. Yeon, P. Lin, C. Choi, et al., Alloying Conducting Channels for Reliable Neuromorphic Computing, Nature Nanotechnology 15, 574 (2020).

7. Д. В. Ичёткин, М. Е. Ширяев, Д. В. Новиков, и др., Многоуровневые мемристорные структуры на основе a-Si с повышенной устойчивостью резистивного переключения и малыми токами потребления, Письма в ЖТФ 49, 39 (2023).

8. D. McBrayer, R. M. Swanson, T. W. Sigmon, Diffusion of Metals in Silicon Dioxide, J. Electrochem. Soc. 133, 1242 (1986).

9. F. Rollert, N. A. Stolwijk, H. Mehrer, Solubility, Diffusion and Thermodynamic Properties of Silver in Silicon, J. Phys. D: Appl. Phys. 20, 1148 (1987).

10. Z. Ma, J. Ge, W. Chen, et al., Reliable Memristor Based on Ultrathin Native Silicon Oxide, ACS Applied Materials and Interfaces 14, 21207 (2022).

11. A. Istratov, E. R. Weber, Physics of Copper in Silicon, J. Electrochem. Soc. 149, G21 (2002).

12. Ren, S. Liu, R. Cai, et al., Algorithm-Hardware Cooptimization of the Memristor-Based Framework for Solving Socp and Homogeneous Qcqp Problems, 2017 22nd Asia and South Pacific Design Automation Conference (ASPDAC), IEEE (2017).

13. Xia and J. J. Yang, Memristive Crossbar Arrays for Brain-Inspired Computing, Nature Materials 18, 309 (2019).

14. Yakopcic, T. M. Taha, G. Subramanyam, R. E. Pino, and S. Rogers, A Memristor Device Model, IEEE Electron Device Lett. 32, 1436 (2011).

15. Konlechner, A. Allagui, V. N. Antonov, and D. Yudin, A Superstatistics Approach to the Modelling of Memristor Current–voltage Responses, Phys. A: Statistical Mechanics and its Applications 614, 128555 (2023).

16. P. G. Le Comber and W. E. Spear, Electronic Transport in Amorphous Silicon Films, Phys. Rev. Lett. 25, 509 (1970).

17. Joshi, and J. M. Acken, Sneak Path Characterization in Memristor Crossbar Circuits, Int. J. Electronics 108, 1255 (2020).

Comments

No posts found

Write a review
Translate