- PII
- S0044451024060117-1
- DOI
- 10.31857/S0044451024060117
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 165 / Issue number 6
- Pages
- 840-847
- Abstract
- Расчитано время рекомбинации Шокли – Рида – Холла (ШРХ) при захвате носителей заряда на состояния вакансии ртути в твердых растворах HgCdTe с шириной запрещенной зоны около 40 мэВ. В рассматривемом случае захват как электрона, так и дырки возможен за счет испускания одного оптического фонона. Установлено, что при T = 4.2 и 77 К рекомбинация ШРХ определяет общее время жизни носителей в материале p-типа при концентрации центров рекомбинации более 2・1015 см−3, что позволяет управлять временем жизни носителей за счет изменения концентрации вакансий ртути.
- Keywords
- Date of publication
- 26.07.2025
- Number of purchasers
- 0
- Views
- 41
References
- 1. M. Brzezinska, Y. Guan, O. V. Yazyev, S. Sachdev, and A. Kruchkov, Engineering Syk Interactions in Disordered Graphene Flakes Under Realistic Experimental Conditions, Phys. Rev. Lett. 131, 036503 (2023), doi:10.1103/PhysRevLett.131.036503.
- 2. Y.-Z. Chou and S. Das Sarma, Kondo Lattice Model in Magic-Angle Twisted Bilayer Graphene, Phys. Rev. Lett. 131, 026501 (2023), doi:10.1103/PhysRevLett.131.026501.
- 3. S. Jois, J. L. Lado, G. Gu, Q. Li, and J. U. Lee, Andreev Reflection and Klein Tunneling in High-Temperature Superconductorgraphene Junctions, Phys. Rev. Lett. 130, 156201 (2023), doi:10.1103/PhysRevLett.130.156201.
- 4. C. Lu, Y. Gao, X. Cao, Y. Ren, Z. Han, Y. Cai, and Z.Wen, Linear and Nonlinear Edge and Corner States in Graphenelike Moire Lattices, Phys. Rev. B 108, 014310 (2023), doi:10.1103/PhysRevB.108.014310.
- 5. G. Yu, Y. Wang, M. I. Katsnelson, and S. Yuan, Origin of the Magic Angle in Twisted Bilayer Graphene From Hybridization of Valence and Conduction Bands, Phys. Rev. B 108, 045138 (2023), doi:10.1103/PhysRevB.108.045138.
- 6. M. Najarsadeghi, A. Ahmadi Fouladi, A. Z. Rostami, and A. Pahlavan, Tunnel Magnetoresistance of Trilayer Graphene-Based Spin Valve, Phys. E 144, 115422 (2022), doi:10.1016/j.physe.2022.115422.
- 7. A. A. Fouladi, Spin-Dependent Transport Properties of Aa-Stacked Bilayer Graphene Nanoribbon, Phys. E 102, 117 (2018), doi:10.1016/j.physe.2018.05.002.
- 8. A. A. Fouladi, Effect of Uniaxial Strain on the Tunnel Magnetoresistance of T-Shaped Graphene Nanoribbon Based Spinvalve, Superlattices and Microstructures 95, 108 (2016), doi:10.1016/j.spmi.2016.04.043.
- 9. A. A. Fouladi and S. Ketabi, Electronic Properties of Z-Shaped Graphene Nanoribbon Under Uniaxial Strain, Phys. E 74, 475 (2015), doi:10.1016/j.physe.2015.08.018.
- 10. G. Le Lay, Silicene Transistors, Nature Nanotech. 10, 202 (2015), doi:10.1038/nnano.2015.10.
- 11. H. Emami-Nejad, A. mir, Z. Lorestaniweiss, A. Farmani, and R. Talebzadeh, First Designing of a Silicene-Based Optical Mosfet With Outstanding Performance, Sci. Rep. 13, 6563 (2023), doi:10.1038/s41598-023-33620-2.
- 12. A. A. Fouladi, Electronic Transport Properties of TShaped Silicene Nanoribbons, Phys. E 91, 101 (2017), doi:10.1016/j.physe.2016.10.040.
- 13. A. A. Fouladi, Quantum Transport Through a ZShaped Silicene Nanoribbon, Chinese Phys. B 26, 047304 (2017), doi:10.1088/1674-1056/26/4/047304.
- 14. B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, and B. Aufray, Epitaxial Growth of a Silicene Sheet, Appl. Phys. Lett. 97, 223109 (2010), doi:10.1063/1.3524215.
- 15. C. Grazianetti, E. Cinquanta, and A. Molle, Two-Dimensional Silicon: The Advent of Silicene, 2D Materials 3, 012001 (2016), doi:10.1088/2053-1583/3/1/012001.
- 16. P. Vogt, P. Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. Asensio, A. Resta, B. Ealet, and G. Le Lay, Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon, Phys. Rev. Lett. 108, 155501 (2012), doi:10.1103/PhysRevLett.108.155501.
- 17. M. Ezawa, A Topological Insulator and Helical Zero Mode in Silicene Under an Inhomogeneous Electric Field, New J. Phys. 14, 033003 (2012), doi:10.1088/1367-2630/14/3/033003.
- 18. N. Drummond, V. Zolyomi, and V. Falko, Electrically Tunable Band Gap in Silicene, Phys. Rev. B 85, doi:10.1103/PhysRevB.85.075423.
- 19. Z. Zhu, Y. Cheng, U. Schwingenschlogl, Giant Spin-Orbit-Induced Spin Splitting in Two-Dimensional Transition-Metal Dichalcogenide Semiconductors, Phys. Rev. B 84, 153402 (2011), doi:10.1103/PhysRevB.84.153402.
- 20. Y. Ding and J. Ni, Electronic Structures of Silicon Nanoribbons, Applied Phys. Lett. 95, 083115 (2009), doi:10.1063/1.3211968.
- 21. B. Kiraly, A. J. Mannix, M. C. Hersam, and N. P. Guisinger, Graphene-silicon Heterostructures at the Two-Dimensional Limit, Chemistry of Materials 27, 6085 (2015), doi:10.1021/acs.chemmater.5b02602.
- 22. L. Meng, Y. Wang, L. Li, and H.-J. Gao, Fabrication of Graphene-silicon Layered Heterostructures by Carbon Penetration of Silicon Film, Nanotechnology 28, 084003 (2017), doi:10.1088/1361-6528/aa53cf.
- 23. G. Li, L. Zhang, W. Xu, J. Pan, S. Song, Y. Zhang, H. Zhou, Y. Wang, L. Bao, Y.-Y. Zhang, S. Du, M. Ouyang, S. T. Pantelides, and H.-J. Gao, Stable Silicene in Graphene/silicene Van Der Waals Heterostructures, Advanced Materials 30, 1804650 (2018), doi:10.1002/adma.201804650.
- 24. B. Liu, J. A. Baimova, C. D. Reddy, S. V. Dmitriev, W. K. Law, X. Q. Feng, and K. Zhou, Interface Thermal Conductance and Rectification in Hybrid Graphene/silicene Monolayer, Carbon 79, 236 (2014), doi:10.1016/j.carbon.2014.07.064.
- 25. H. Pourmirzaagha and S. Rouhi, Molecular Dynamic Simulations of the Heat Transfer in Double-Layered Graphene/Silicene Nanosheets, Phys. B 666, 415079 (2023), doi:10.1016/j.physb.2023.415079.
- 26. J. Zhou, H. Li, H.-K. Tang, L. Shao, K. Han, and X. Shen, Phonon Thermal Transport in Silicene/graphene Heterobilayer Nanostructures: Effect of Interlayer Interactions, ACS Omega 7, 5844 (2022), doi:10.1021/acsomega.1c05932.
- 27. C.-C. Liu, H. Jiang, and Y. Yao, Low-Energy Effective Hamiltonian Involving Spin-Orbit Coupling in Silicene and Two-Dimensional Germanium and Tin, Phys. Rev. B 84, 195430 (2011), doi:10.1103/PhysRevB.84.195430.
- 28. M. P. L. Sancho, J. M. L. Sancho, J. M. L. Sancho, and J. Rubio, Highly Convergent Schemes for the Calculation of Bulk and Surface Green Functions, J. Phys. F: Metal Physics 15, 851 (1985), doi:10.1088/0305-4608/15/4/009.
- 29. S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cambridge (1995).
- 30. J. C. Boettger and S. B. Trickey, First-Principles Calculation of the Spin-Orbit Splitting in Graphene, Phys. Rev. B 75, 121402 (2007), doi:10.1103/PhysRevB.75.121402.
- 31. H. Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, L. Kleinman, and A. H. Mac-Donald, Intrinsic and Rashba Spin-Orbit Interactions in Graphene Sheets, Phys. Rev. B 74, 165310 (2006), doi:10.1103/PhysRevB.74.165310.