- Код статьи
- S0044451024060087-1
- DOI
- 10.31857/S0044451024060087
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 165 / Номер выпуска 6
- Страницы
- 818-826
- Аннотация
- Рассмотрены особенности поляризованной люминесценции, индуцированной магнитным полем в ансамбле локализованных экситонов. Обнаружено, что 1) в неоднородном ансамбле расщепление полос фотолюминесценции в магнитном поле в правой и левой круговых поляризациях может на порядки превышать величину зеемановского расщепления отдельных экситонов в ансамбле; 2) нижняя по энергии полоса фотолюминесценции может иметь меньшую интенсивность, чем верхняя, что на первый взгляд противоречит больцмановскому распределению по энергиям; 3) знак круговой поляризации фотолюминесценции может меняться по контуру полосы излучения. Показано, что в неоднородном ансамбле все эти особенности объясняются зависимостью g-фактора экситона от энергии его локализации.
- Ключевые слова
- Дата публикации
- 26.07.2025
- Всего подписок
- 0
- Всего просмотров
- 46
Библиография
- 1. D. G. Thomas and J. J. Hopfield, Bound Exciton Complexes, Phys. Rev. Lett. 7, 316 (1961).
- 2. V. P. Kochereshko and I. N. Uraltsev, Polarized Magnetoluminescence Study of Confinement Effects on Shallow Acceptors in: Semiconductors and Insulators: Optical and Spectroscopic Research, Nova Sci. Publ. Inc. (1992).
- 3. T. S. Shamirzaev, J. Rautert, D. R. Yakovlev et al., Spin Dynamics and Magnetic Field Induced Polarization of Excitons in Ultrathin GaAs/AlAsQuantum Wells with Indirect Band Gap and Type-II Band Alignment, Phys. Rev. B 96, 035302 (2017).
- 4. T. S. Shamirzaev, J. Rautert, D. R. Yakovlev et al., Exciton Recombination and Spin Relaxation in Strong Magnetic Fields in Ultrathin (In, Al)As/AlAs Quantum Wells with Indirect Band Gap and Type-I Band Alignment, Phys. Rev. B 104, 045305 (2021).
- 5. E. L. Ivchenko, Magnetic Circular Polarization of Exciton Photoluminescence, Phys. Sol. St. 60, 1514 (2018).
- 6. D. R. Yakovlev, A. V. Platonov, E. L. Ivchenko et al., Hidden In-Plane Anisotropy of Interfaces in Zn(Mn)Se/BeTe Quantum Wells with a Type-II Band Alignment, Phys. Rev. Lett. 88, 2574011 (2002).
- 7. D. Andronikov, V. Kochereshko, A. Platonov et al., Singlet and Triplet Trion States in High Magnetic Fields: Photoluminescence and Reflectivity Spectra of Modulation-Doped CdTe/Cd0.7Mg0.3Te Quantum Wells, Phys. Rev. B 72, 165339 (2005).
- 8. I. N. Uraltsev, V. P. Kochereshko, V. S. Vikhnin et al., Polarized Luminescence Study of Shallow Acceptors in Short-Period Superlattices, Materials Science Forum 65-66 (1990), p. 111, Proc. 4 Int. Conf. Shallow Impurities in Semiconductors, London (1990).
- 9. H. P. Gislason, B. Monemar, P. J. Bean et al., Photoluminescence Studies of the 1.911-eV Cu-Related Complex in GaP, Phys. Rev. B 26, 827 (1982).
- 10. S. Pemogorov, A. Reznitsky, S. Verbin, and V. Lysenko, Exciton Mobility Edge in CdS1−xSex Solid Solutions, Sol. St. Commun. 47, 5 (1983).
- 11. D. Gammon, E. S. Snow, B. V. Shanabrook et al., Fine Structure Splitting in the Optical Spectra of Single GaAs Quantum Dots, Phys. Rev. Lett. 76, 3005 (1996).
- 12. С. В. Гупалов, Е. Л. Ивченко, А. В. Кавокин, Тонкая структура локализованных экситонных уровней в квантовых ямах, ЖЭТФ 113, 703 (1998).
- 13. K. J. Moore, G. Duggan, P. Dawson et al., Short-Period GaAs-AlAs Superlattices: Optical Properties and Electronic Structure, Phys. Rev. B 38, 5535 (1988).
- 14. T. S. Shamirzaev, A. V. Nenashev, A. K. Gutakovskii et al., Atomic and Energy Structure of InAs/AlAs Quantum Dots, Phys. Rev. B 78, 085323 (2008).
- 15. J. Debus, T. S. Shamirzaev, D. Dunker et al., Spin-Flip Raman Scattering of the Gamma-X Mixed Exciton in Indirect Band Gap (In,Al)As/AlAs Quantum Dots, Phys. Rev. B 90, 125431 (2014).
- 16. R. Heitz, M. Grundmann, N. N. Ledentsov et al., Multiphonon Relaxation Processes in Self-Organized InAs/GaAs Quantum Dots, Appl. Phys. Lett. 68, 361 (1996).
- 17. Feng Liu, L. Biadala, A. V. Rodina et al., Spin Dynamics of Negatively Charged Excitons in CdSe/CdS Colloidal Nanocrystals, Phys. Rev. B 88, 035302 (2013).
- 18. B. Siebers, L. Biadala, D. R. Yakovlev et al., Exciton Spin Dynamics and Photoluminescence Polarization of CdSe/CdS Dot-in-Rod Nanocrystals in High Magnetic Fields, Phys. Rev. B 91, 155304 (2015).
- 19. G. Qiang, A. A. Golovatenko, E. V. Shornikova et al., Polarized Emission of CdSe Nanocrystals in Magnetic Field: The Role of Phonon-Assisted Recombination of the Dark Exciton, Nanoscale 13, 790 (2021).
- 20. V. P. Kochereshko, A. V. Platonov, G. V. Mikhailov et al., Temporal Dynamics of Exciton-Trion System, Int. J. Nanosci. 2, 453 (2003).
- 21. G. V. Astakhov, A. A. Kiselev, V. P. Kochereshko et al., Radiative Recombination of Electrons and Holes Localized at GaAs/AlGaAs Heterointerface under Magnetic Fields Semicond. Sci. Technol. 14, 110 (1999).
- 22. L. Kotova, T. Shamirzaev, V. Kochereshko, Polarized Photoluminescence and g-Factor in an Ensemble of Quantum Dots in Magnetic Fields, arXiv:f2310.02082 (2023).
- 23. Ya. V. Terent’ev, S. N. Danilov, J. Loher et al., Magneto-Photoluminescence of InAs/InGaAs/InAlAs Quantum Well Structures, Appl. Phys. Lett. 104, 101111 (2014).
- 24. E. S. Moskalenko, L. A. Larsson, M. Larsson et al., Comparative Magneto-Photoluminescence Study of Ensembles and of Individual InAs Quantum Dots, Nano Lett. 9, 353 (2009).
- 25. L. M. Roth, B. Lax, and S. Zwerdling, Theory of Optical Magneto-Absorption Effects in Semiconductors, Phys. Rev. 114, 90 (1959).
- 26. I. A. Yugova, A. Greilich, D. R. Yakovlev et al., Universal Behavior of the Electron g-Factor in GaAsAlxGa1−xAs Quantum Wells, Phys. Rev. B 75, 245302 (2007).
- 27. M. A. Semina, A. A. Golovatenko, and A. V. Rodina, Influence of the Spin-Orbit Split-Off Valence Band on the Hole g-Factor in Semiconductor Nanocrystals, Phys. Rev. B 104, 205423 (2021).
- 28. M. A. Semina and R. A. Suris, Holes Localized in Nanostructures in an External Magnetic Field: g-Factor and Mixing of States, Semiconductors 49, 797 (2015).
- 29. L. C. Smith, J. J. Davies, D.Wolverson et al., Motion-Dependent Magnetic Properties of Excitons in CdTe, Phys. Rev. B 78, 085204 (2008).
- 30. L. C. Smith, J. J. Davies, D. Wolverson et al., Wave-Vector Dependence of Magnetic Properties of Excitons in ZnTe, Phys. Rev. B 83, 155206 (2011).
- 31. Th. Wimbauer, K. Oettinger, Al. L. Efros et al., Zeeman Splitting of the Excitonic Recombination in InxGa1−xAs/GaAs Single Quantum Wells, Phys. Rev. B 50, 8889 (1994).
- 32. D. Csontosov´a and P. Klenovsk´y, Theory of Magneto-Optical Properties of Neutral and Charged Excitons in GaAs/AlGaAs Quantum Dots, Phys. Rev. B 102, 125412 (2020).
- 33. P. S. Grigoryev, O. A. Yugov, S. A. Eliseev et al., Inversion of Zeeman Splitting of Exciton States in InGaAs Quantum Wells, Phys. Rev. B 93, 205425 (2016).
- 34. J. J. Davies, L. C. Smith, D.Wolverson et al., Motion-Enhanced Magnetic Moments of Excitons in ZnSe, Phys. Rev. B 81, 085208 (2010).
- 35. V. P. Kochereshko, A. V. Platonov, R. T. Cox et al., Increasing of the Exciton-Polariton Zeeman Splitting Due to its Motion, Phys. St. Sol. (c) 11, 3928 (2005).
- 36. N. J. Traynor, R. J. Warburton, M. J. Snelling et al., Highly Nonlinear Zeeman Splitting of Excitons in Semiconductor Quantum Wells, Phys. Rev. B 55, 15701 (1997).
- 37. Е. Л. Ивченко, А. А. Киселев, Электронный g-фактор в квантовых ямах и сверхрешетках, ФТП 26, 1471 (1992).
- 38. A. Greilich, D. R. Yakovlev, A. Shabaev et al., Mode Locking of Electron Spin Coherences in Singly Charged Quantum Dots, Science 313, 341 (2006).