В эксперименте по трехфотонному лазерному возбуждению 5S1/2 → 5P3/2 → 6S1/2 → 37P3/2 одиночного ридберговского атома 87Rb, захваченного в оптическую дипольную ловушку, впервые наблюдались трехфотонные осцилляции населенностей Раби между основным и ридберговским состоянием. Одиночный атом регистрировался оптическим методом по сигналу резонансной флуоресценции на малошумящей sCMOS-видеокамере. Измерялась относительная вероятность атому остаться в ловушке после действия трех синхронизованных возбуждающих лазерных импульсов с длительностями, изменяемыми от 100 нс до 2 мкс. Особенностью эксперимента было использование интенсивного лазерного излучения с длиной волны 1367 нм на второй ступени возбуждения, обеспечивающего однофотонную частоту Раби до 2 ГГц для управления эффективными отстройками промежуточных уровней трехфотонного перехода за счет динамического эффекта Штарка. Зарегистрированы осцилляции Раби с частотой от 1 до 5 МГц в зависимости от интенсивности лазерных импульсов первой и второй ступеней возбуждения при времени когерентности 0.7−0.8 мкс. Обсуждаются пути увеличения времени когерентности и контраста трехфотонных осцилляций Раби для применений в квантовой информатике с ридберговскими атомами.
Основываясь на нашей недавней статье [arXiv: 2206.12176 (2022)], мы рассматриваем масштабируемую архитектуру гетероядерного квантового регистра из нейтральных атомов щелочных металов, в котором возможна параллельная реализация вентилей CNOT (управляемое НЕ) для квантовой обработки информации. Параллельное выполнение вентилей CNOT для удаленных друг от друга пар кубитов сочетается с последовательным выполнением таких вентилей для пар соседних кубитов, в которых один из кубитов является общим для всех пар. Для выполнения вентилей используется когерентный транспорт массива атомов одного химического элемента (вспомогательные кубиты) по отношению к массиву атомов другого химического элемента (кубиты данных). Вспомогательные кубиты удерживаются в массиве мобильных оптических дипольных ловушек, генерируемых двумерным акустооптическим дефлектором. Кубиты данных хранятся в массиве стационарных оптических дипольных ловушек, создаваемых с помощью пространственного модулятора света. Когерентный транспорт обеспечивает сохранение суперпозиций логических состояний вспомогательных кубитов, несмотря на их перемещение в пространстве. При этом пути перемещения выбираются таким образом, чтобы избежать пересечений с кубитами данных в пространстве. Численно оптимизированы параметры системы для достижения точности параллельновыполняемых вентилей CNOT около F = 95% для условий, которые могут быть реализованы в эксперименте. Предложенная архитектура может быть применена для реализации поверхностных кодовквантовой коррекции ошибок. Для оценки эффективности вентилей также исследованы энтропия Реньи и взаимная информация.
Рассмотрен квантовый алгоритм решения задачи коммивояжера методом квантовой оценки фазы и квантового поиска. Развивается подход, ранее предложенный для решения этой задачи. Использован один квантовый регистр для кодирования собственных состояний унитарного оператора, фаза которого задает длительность каждого из возможных маршрутов. Для оценки длительности маршрута используется алгоритм квантовой оценки фазы. Затем для нахождения минимальной длительности маршрута измеренные значения длительностей кодируются в состояния второго квантового регистра и проводится поиск оптимального маршрута с помощью модифицированного алгоритма Гровера. Проведено численное моделирование предложенного квантового алгоритма с использованием библиотеки Qiskit для одной и двух итераций модифицированного алгоритма Гровера.
Экспериментально продемонстрировано трехфотонное лазерное возбуждение одиночных атомов рубидия в оптической дипольной ловушке в ридберговское 37P -состояние лазерными излучениями с длинами волн 780 нм, 1367 нм и 743 нм. Возбуждение в ридберговские состояния детектировалось оптическим методом по потерям атомов в оптической дипольной ловушке. Записаны спектры лазерного возбуждения одиночных ридберговских атомов в оптической дипольной ловушке и измерена зависимость вероятности возбуждения от длительности лазерного импульса. Измеренная ширина спектра составила 2 МГц. Также проведены эксперименты по спектроскопии гашения флуоресценции облака холодных атомов в магнитооптической ловушке при трехфотонном лазерном возбуждении атомов в ридберговские состояния. Проведено сравнение результатов экспериментов с численным расчетом. Рассмотрены методы повышения точности когерентного трехфотонного лазерного возбуждения ридберговских атомов в оптической дипольной ловушке.
Исследуется поглощение световой волны, взаимодействующей с оптическими переходами в D1-линии атома щелочного металла в присутствии микроволнового излучения, резонансного магнито-дипольным переходам между сверхтонкими компонентами основного состояния. Известно, что при сканировании продольного магнитного поля (B||k, где k - волновой вектор) возможно наблюдение магнитооптического резонанса, связанного с эффектом Ханле в основном состоянии (ЭХОС). Кроме того, в виду наличия резонансного микроволнового излучения, также имеет место эффект двойного радиооптического резонанса (ДРОР). Проведено теоретическое и экспериментальное исследование степени взаимного влияния этих эффектов на формирование узкого магнитооптического резонанса в поглощении световой волны. В ходе теоретического анализа показано, что эти эффекты конкурируют друг с другом и действуют на формирование резонанса деструктивным образом, что приводит к малой амплитуде резонанса и усложнению его формы. Однако в присутствии буферного газа такого давления, что сверхтонкое расщепление возбужденного состояния спектрально не разрешается, становится возможным наблюдать магнитооптический резонанс с относительно большой амплитудой. Эксперименты выполнены с использованием миниатюрной стеклянной ячейки (V ∼ 0.1 см3), наполненной парами 87Rb и буферным газом (≈ 95 Торр аргона). В экспериментах, в частности, наблюдается эффект сужения резонанса с ростом интенсивности светового поля, предсказанный теоретически. Предложенная конфигурация возбуждения магнитооптических резонансов может быть использована в квантовой магнитометрии для измерения слабых постоянных магнитных полей, а также резонансных микроволновых полей с использованием ячеек с парами атомов щелочных металлов.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации