Кристаллы класса шпинелей AMe2O4 находят широкое практическое применение, от фотокатализа до спинтроники, но зачастую обладают нетривиальными электронными и магнитными свойствами, нелегко поддающимися теоретическому описанию. В работе были проведены расчеты в рамках метода DFT+U для всевозможных нейтральных точечных дефектов в Fe3O4 (магнетит) и FeCr2O4 (хромит) и рассмотрены всевозможные типы катионных и кислородных дефектов в обеих шпинелях. Полученные результаты раскрывают как сходства, так и принципиальные различия дефектных соединений Fe3O4 и FeCr2O4, характеризуя хромит как более дефектоустойчивый материал, и могут служить подспорьем для развития новых многомасштабных моделей коррозии сталей.
Для описания эволюции ядерных топлив важным процессом является образование газонаполненных наноразмерных пузырьков в результате объединения отдельных продуктов деления урана. Теоретическое описание этого процесса связано со значительными трудностями, так как требует учета в рамках единой модели как динамики отдельных атомов в решетке, так и кинетики эволюции ансамбля пузырьков. В данной статье описана попытка построить такую модель, основанную на молекулярно-динамических (МД) расчетах для пузырьков ксенона в ОЦК-уране в случае избытка междоузельных атомов в кристаллической матрице. Анализ основан на МД-моделировании неравновесного процесса образования нанопузырьков ксенона из отдельных атомов Xe, растворенных в кристаллической матрице. Проанализировано соотношение размера пузырьков и числа атомов газа в них, а также зависимость коэффициента диффузии пузырьков от их радиуса и числа междоузельных атомов в матрице γ-U. Предложена кинетическая модель эволюции ансамбля пузырьков, позволяющая описать результаты МД-расчетов и экстраполировать их на большие времена.
Индексирование
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation