ОСОБЕННОСТИ СПИНОВЫХ ВЗАИМОДЕЙСТВИЙ И СПИНОВЫХ СТРУКТУР В ЯН-ТЕЛЛЕРОВСКИХ МАГНЕТИКАХ

$A. C. Москвин^{a,b^*}$

^а Уральский федеральный университет им. первого Президента России Б. Н. Ельцина 620083, Екатеринбург, Россия

> ^b Институт физики металлов им. М. Н. Михеева Уральского отделения Российской академии наук 620180, Екатеринбург, Россия

Поступила в редакцию 24 сентября 2024 г., после переработки 27 ноября 2024 г. Принята к публикации 28 ноября 2024 г.

В рамках модели зарядовых триплетов, предложенной для описания зарядового диспропорционирования в ян-теллеровских магнетиках рассмотрена роль двухчастичного переноса заряда в формировании спин-зарядовой структуры на примере ортоникелатов RNiO₃ и ортоманганитов RMnO₃ (R — редкая земля или иттрий). Показано, что в общем случае спиновая зависимость гамильтониана двухчастичного переноса, или «бозонного» двойного обмена не может быть сведена к эффективному спин-гамильтониану Гейзенберга, а спин-зарядовая структура ян-теллеровских магнетиков определяется в результате минимизации энергии двойного обмена, сверхобмена и энергии спин-независимых нелокальных корреляций. Необычная магнитная структура ортоникелатов, определяемая «странным» вектором распространения $\mathbf{k} = (1/2,0,1/2)$ с сосуществованием ферро- и антиферромагнитных связей, является следствием конкуренции двухчастичного переноса, стабилизирующего ферромагнитную F-фазу, и сверхобменного вза-имодействия Ni²⁺-O²⁻-Ni²⁺, стабилизирующую антиферромагнитную фазу *G*-типа. Анализ спиновой структуры электронно-дырочных центров в RMnO₃ и тенденцию к формированию спиральных структур в зарядово-диспропорционированной фазе более «тяжелых» манганитов.

DOI: 10.31857/S0044451025030125

1. ВВЕДЕНИЕ

Ортоникелаты RNiO₃ и ортоманганиты RMnO₃ (R — редкая земля или иттрий) демонстрируют чрезвычайно необычные электрические и магнитные свойства, представляющие большой интерес как с фундаментальной, так и прикладной технологической точки зрения. Они относятся к широкому классу ян-теллеровских (Jahn – Teller, JT) магнетиков [1–4] — соединений на основе янтеллеровских 3d-ионов группы железа и 4d-ионов группы палладия с конфигурациями типа $t_{2g}^{n_1} e_g^{n_2}$ в высокосимметричном октаэдрическом, кубическом или тетраэдрическом окружении и с орбиталь-

ным Е_q-дублетом в основном состоянии. Это соединения на основе тетракомплексов с конфигурацией $d^1(\mathrm{Ti}^{3+}, \mathrm{V}^{4+})$ и высокоспиновой (HS) конфигурацией d^6 (Fe²⁺, Co³⁺), октакомплексы с HS-конфигурацией d^4 (Mn³⁺, Fe⁴⁺, Ru⁴⁺), с низкоспиновой (LS) конфигурацией d^7 (Co²⁺, Ni³⁺, Pd³⁺), октакомплексы с конфигурацией также a d^9 (Cu²⁺, Ni¹⁺, Ag²⁺) (см. табл. 1)¹⁾. Класс JTмагнетиков включает в себя большое количество перспективных материалов, находящихся в центре внимания современной физики конденсированного состояния, таких как манганиты RMnO₃, ферраты (Ca,Sr)FeO₃, рутенаты RuO₂, (Ca,Sr)RuO₃, (Ca,Sr)₂RuO₄, широкий набор ферропниктидов (FePn) и феррохалькогенидов (FeCh), ортоникелат

E-mail: alexander.moskvin@urfu.ru

¹⁾ По сравнению с аналогичной таблицей из работы [4] расширен список JT-систем.

RNiO₃, купрат KCuF₃, квазидвумерные купрат La₂CuO₄ и никелаты RNiO₂, соединения на основе серебра (AgO, AgF₂).

В отличие от магнетиков на основе ионов S-типа, т. е. ионов с полностью или наполовину заполненными t_{2q} - и/или e_q -оболочками с октаконфигурациями

 $\begin{array}{c} t_{2g}^{3} \, (\mathrm{Cr}^{3+}, \mathrm{Mn}^{4+}), \, t_{2g}^{6} \, (\mathrm{Fe}^{2+}, \mathrm{Co}^{3+}), \\ t_{2g}^{3} e_{g}^{2} \, (\mathrm{Mn}^{2+}, \mathrm{Fe}^{3+}), \, t_{2g}^{6} e_{g}^{2} \, (\mathrm{Ni}^{2+}, \mathrm{Cu}^{3+}) \end{array}$

или тетраконфигурациями e_g^2 (Ti²⁺, V³⁺, Cr⁴⁺, Mn⁵⁺), $e_g^2 t_{2g}^3$ (Mn²⁺, Fe³⁺, Co⁴⁺), $e_g^4 t_{2g}^3$ (Co²⁺, Ni³⁺)

и орбитально невырожденным основным состоянием в высокосимметричном окружении, где мы имеем дело с единственной спиновой степенью свободы, для ЈТ-магнетиков мы вынуждены учитывать еще и орбитальную, и зарядовую степени свободы, что, с одной стороны, приводит к огромному разнообразию свойств ЈТ-магнетиков, а с другой стороны, серьезно усложняет их теоретический анализ. ЈТ-магнетики обладают богатым спектром уникальных свойств от различных типов магнитного и зарядового упорядочения до переходов типа изолятор-квазиметалл (bad metal) и сверхпроводимости. Так, недавно были обнаружены сверхпроводящие свойства в никелатах со смешанной валентностью $La_3Ni_2O_7$ [5–7].

Все ЈТ-конфигурации *d*-ионов включают один е_q-электрон или одну е_q-дырку сверх устойчивых, полностью или наполовину заполненных, оболочек. В этом смысле они похожи на конфигурации многочисленного семейства ионов с одним ns-электроном сверх заполненных оболочек, например 6*s*-электроном в Hg⁺, Tl²⁺, Pb³⁺, Bi⁴⁺. Эти ионные конфигурации являются неустойчивыми относительно реакции диспропорционирования или даже несуществующими (missing oxidation states [8]). Так, в ВаВіО₃ вместо номинальной валентности 4+ висмут предпочитает устойчивые валентные состояния ${\rm Bi}^{3+}$ и ${\rm Bi}^{5+}$ с полностью заполненными оболочками. Однако в отличие от ионов с ns-электронами для JT-ионов мы имеем дело с орбитальным вырождением для е_а-электронов/дырок, а значит, возможностью конкуренции между эффектом Яна-Теллера, приводящим к орбитальному упорядочению [1], и эффектом анти-JT-диспропорционирования [4], приводящим к формированию системы электронных и дырочных центров S-типа с орбитально невырожденным основным состоянием [3, 4], эквивалентной системе эффективных композитных спин-синглетных или спин-триплетных бозонов (см. столбец 4 в табл. 1) в немагнитной («однозонные»

JT-магнетики), или магнитной («двухзонные» JT-магнетики) решетке (см. столбец 5 в табл. 1).

Как правило, снятие орбитального Е-вырождения в высокосимметричной «материнской» фазе ЈТ-магнетиков, связанное с обычным эффектом Яна-Теллера, приводит к образованию низкосимметричной диэлектрической антиферромагнитной (La₂CuO₄, KCuF₃, LaMnO₃) или ферромагнитной (CsMnF₄, K₂CuF₄) фазы с орбитальным порядком (ОО-изолятор). Устойчивость ЈТ-фазы определяется как большой величиной энергии JTстабилизации [1,2], так и сильной вибронной редукцией интегралов одночастичного переноса.

Анти-JT-симметричное *d*-*d*-диспропорционирование по схеме

$$3d^n + 3d^n \rightarrow 3d^{n+1} + 3d^{n-1} \Leftrightarrow 3d^{n-1} + 3d^{n+1} \,, \quad (1)$$

предполагающее образование системы электронных d^{n+1} и дырочных d^{n-1} центров, отличающихся парой электронов/дырок, является альтернативным и конкурирующим механизмом снятия орбитального вырождения в JT-магнетиках [3,4,9–13]. Очевидно, что в системах с сильной *d-p*-гибридизацией (ковалентность катион-анион) реакция диспропорционирования (1) должна быть записана на «кластерном» языке, например, как для кластеров NiO₆ в ортоникелатах RNiO₃,

$$[\operatorname{NiO}_6]^{9-} + [\operatorname{NiO}_6]^{9-} \rightarrow [\operatorname{NiO}_6]^{10-} + [\operatorname{NiO}_6]^{8-} \Leftrightarrow$$
$$\Leftrightarrow [\operatorname{NiO}_6]^{8-} + [\operatorname{NiO}_6]^{10-}, \quad (2)$$

вместо

$$d^7 + d^7 \to d^8 + d^6 \Leftrightarrow d^6 + d^8 \tag{3}$$

или

$$\mathrm{Ni}^{3+} + \mathrm{Ni}^{3+} \to \mathrm{Ni}^{2+} + \mathrm{Ni}^{4+} \Leftrightarrow \mathrm{Ni}^{4+} + \mathrm{Ni}^{2+} \,. \tag{4}$$

Кластерный формализм фактически является обобшением теории поля лигандов. в котором одночастичные состояния описываются как молекулярные орбитали — линейные комбинации атомных ndорбиталей катиона и 2*p*-орбиталей лигандов. Этот подход автоматически учитывает локальную точечную симметрию катиона и обобщает известный и до сих пор популярный атомно-молекулярный подход (см., например, [14]), в котором кластеры описываются комбинацией следующих атомных состояний:

$$\begin{split} [\text{NiO}_6]^{9-} &: \quad 3d^7, \quad 3d^8\underline{L}, \quad 3d^9\underline{L}^2; \\ [\text{NiO}_6]^{10-} &: \quad 3d^8, \quad 3d^9\underline{L}, \quad 3d^{10}\underline{L}^2; \\ [\text{NiO}_6]^{8-} &: \quad 3d^6, \quad 3d^7\underline{L}, \quad 3d^8\underline{L}^2, \end{split}$$

ЈТ-конфигурации	Cmar	IC/UC	Эфф. комп.	Domozwo	Примеры
ЈТ-ионы	Симм.	Lo/115	бозон	гешетка	ЈТ-магнетиков
$3d^1(e_g^1); {}^2E$	тетра	_	$e_{g}^{2};^{3}A_{2g}$	A_{1g}	β -Sr ₂ VO ₄
Ti^{3+}, V^{4+}, Cr^{5+}			s = 1	S = 0	$(Sr,Ba)_3Cr_2O_8$
$3d^{3}(e_{g}^{3})$; ² E	TOTTO	LS	$\underline{e}_{g}^{2};^{3}A_{2g}$	A_{1g}	BaaVGeaOz
V^{2+}, Cr^{3+}, Mn^{4+}	icipa	LD	s = 1	S = 0	
					CrO, CrF_2
	окта	HS	$e_g^2; {}^3A_{2g}$ $s = 1$	A_{2g} $S = 3/2$	$\mathrm{Sr}_{2}\mathrm{FeO}_{4}$
$3d^4(t_{2g}^3e_g^1); {}^5E$					$(Ca, Sr, Ba)FeO_3$
$Cr^{2+}, Mn^{3+}, Fe^{4+}$					$(Ca,Sr,Ba)_3Fe_2O_7$
					$RMnO_3$, $LaMn_7O_{12}$
					$(Li,K,Na,Rb,Cs,Tl,NH_4)MnF_4$
$4d^4(t_{2g}^3e_g^1); {}^5E$	окта	HS	$e_g^2; {}^3A_{2g}$ $s = 1$	A_{2g} $S = 3/2$	$(Ca,Sr)_2RuO_4$
					$(Ca,Sr)RuO_3, RuO_2$
Ru ⁺					$(Ca,Sr)_3Ru_2O_7$
$3d^6(e_g^3t_{2g}^3); {}^5E$	тетра	HS	$e_{g}^{2}; {}^{3}A_{2g}$	A_{2g}	EaDra EaCh Na CaO
${\rm Fe}^{2+}, {\rm Co}^{3+}$			s = 1	S = 3/2	$\mathbf{Fer}\mathbf{n},\mathbf{FeCn},\mathbf{Na}_5\mathbf{CoO}_4$
$3d^7(t_{2g}^6e_g^1); {}^2E$	окта	LS	$e_{g}^{2};^{3}A_{2g}$	A_{1g}	$RNiO_3$, $La_3Ni_2O_7$
Co^{2+} , Ni^{3+}			s = 1	S = 0	$(Li,Na,Ag)NiO_2$
$3d^9(t_{2g}^6e_g^3); {}^2E$	окта	_	$e_{g}^{2}; {}^{3}A_{2g}$	A_{1g}	CHE KONE KONE
Cu^{2+} , Ni ⁺			s = 1	S = 0	Cur_2 , KCur_3 , K_2 Cur_4
$4d^9(t_{2g}^6e_g^3); {}^2E$	окта	_	$e_{q}^{2}; {}^{3}A_{2g}$	A_{1g}	$\Lambda = O \left(\Lambda = \frac{1+\Lambda}{2} = \frac{3+O}{2} \right)$
Pd^+, Ag^{2+}			s = 1	S = 0	$\operatorname{AgO}\left(\operatorname{Ag}^{-}\operatorname{Ag}^{-}\operatorname{O}_{2}\right)$
$3d^9(t_{2g}^6e_g^3); {}^2B_{1g}$	окта*		$\underline{b}_{1g}^2; {}^1A_{1g}$	A_{1g}	CuO, La_2CuO_4
Cu^{2+} , Ni ⁺	квадр.		s = 0	S = 0	HTSC cuprates, $RNiO_2$,
$4d^9(t_{2g}^6e_g^3); {}^2B_{1g}$	окта*	_	$\underline{b}_{1g}^2; {}^1A_{1g}$	A_{1g}	AgF ₂ , KAgF ₃
Pd^+, Ag^{2+}	квадр.		s = 0	S = 0	Cs_2AgF_4 , $LaPdO_2$

Таблица 1. JT-магнетики с конфигурациями $3d^n$ и $4d^n$

Примечания: s — спин эффективного композитного бозона; S — спин узлов решетки, по которой движутся композитные бозоны; осta^{*} — существенно искаженный октаэдр; подчеркивание снизу указывает на дырочное состояние.

где <u>L</u> означает дырку на лиганде. Кластерная модель предполагает замену катион-анионной системы решеткой, в узлах которой локализованы кластеры типа NiO₆ (Ni^{2+,3+,4+}-центры), электронная структура которых эффективно учитывает p-d-ковалентность.

Обратим особое внимание на правую часть соотношений (1)–(4), указывающую на возможность реализации как классического диспропорционирования с формированием центров с определенным зарядом оболочки (центра) $n \pm 1$, так и квантового диспропорционирования с формированием квантовых суперпозиций $n \pm 1$ -центров с неопределенной валентностью и средним зарядом n, соответствующим «родительским» центрам. Электронные (n + 1) и дырочные (n - 1) центры отличаются на пару электронов/дырок — эффективный композитный бозон.

Все JT-магнетики можно условно разделить на «одно-» и «двухзонные». В однозонных JTмагнетиках с конфигурациями d^1 , d^3 , d^7 и d^9 эффективные электронные (d^1, d^7) или дырочные (d^3, d^9) композитные бозоны движутся в решетке центров с полностью заполненными оболочками, а в двухзонных JT-магнетиках (d^4, d^6) решетка включает центры с наполовину заполненной t_{2q} -подоболочкой и спином S=3/2.

Основная информация о JT-ионах или, точнее, о JT-центрах — электронная конфигурация, симметрия окружения, LS-HS-характер многоэлектронной конфигурации, оптимальные конфигурации и спин композитного бозона, а также орбитальное состояние и локальный спин решетки, образующиеся в результате анти-JT-диспропорционирования, примеры реальных JT-магнетиков, приведены в табл. 1. Отметим, что во всех случаях полное диспропорционирование приводит к системе композитных бозонов с концентрацией 0.5, или полузаполнению.

Необычные свойства широкого класса ЈТмагнетиков с различной кристаллической и электронной структурой, с необычным зарядовым и магнитным порядком можно объяснить в рамках единого сценария [4]. Анти-ЈТ-диспропорционирование во всех этих ЈТ-магнетиках приводит к образованию системы эффективных локальных композитных спин-синглетных или спин-триплетных, электронных или дырочных S-бозонов, «движущихся» по магнитной или немагнитной решетке, которые могут находиться в различных локализованных или делокализованных, магнитных или немагнитных фазовых состояниях, включая нетрадиционный зарядовый или спин-зарядовый порядок, спин-синглетное (купраты, никелаты) или спин-триплетное (манганиты, FePn/Ch, рутенаты) сверхпроводящее состояние. Все JT-магнетики являются сильнокоррелированными системами в том смысле, что они не могут быть адекватно описаны в рамках методов, основанных на теории функционала плотности (DFT) (или их гибридных расширений типа LDA+U), так что для корректного описания свойств таких материалов требуется выход за пределы DFT-методов (см., например, работы [15,16]).

К сожалению, типичный подход к анализу электронной и спиновой структуры JT-магнетиков предполагает реализацию в них кооперативного JT-упорядочения. Во многом это связано с популярностью широко известной пионерской работы Кугеля и Хомского [1], заложивших теоретические основы описания орбитально-структурного и спинового порядка в JT-магнетиках, устойчивых относительно переноса заряда, с большими проблемами описания в рамках *ab initio* DFTподходов, а также и субъективного «неприятия» диспропорционирования как некоторого чисто химического явления, тем более что экспериментально факт анти-JT-диспропорционирования установлен достаточно надежно всего лишь в нескольких группах ЈТ-магнетиков. Прежде всего это ферраты (Ca, Sr)FeO₃, ортоникелаты RNiO₃, окись серебра AgO, но если в ферратах решающими являются неоспоримые данные эффекта Мёссбауэра [17], то в отношении никелатов до сих пор делаются попытки описания в рамках традиционных ЈТ-фаз [18]. Неустойчивость относительно переноса заряда не обязательно подразумевает основное зарядоводиспропорционированное (charge disproportionated, CD) состояние JT-магнетика — CD-фазу. Так, в манганите LaMnO₃ основное состояние соответствует кооперативному ЈТ-упорядочению с антиферромагнитной структурой А-типа, но как многочисленные экспериментальные данные, так и теоретический анализ [12, 19] свидетельствуют о конкуренции ЈТ-фазы и CD-фазы в «борьбе» за основное состояние.

Современные представления о диспропорционированном состоянии, как правило, ограничиваются представлением о классической системе электронных и дырочных центров типа Ni²⁺ и Ni⁴⁺ либо Ni^{3±δ} в ортоникелатах как результате отрицательных значений параметра локальных корреляций U (negative-U model) без какого-либо анализа принципиальной роли нелокальных корреляций и двухчастичного (бозонного) переноса в формировании электронной и, что особенно важно, магнитной структуры.

В данной работе на примере однозонных JTмагнетиков RNiO₃ и двухзонных JT-магнетиков RMnO₃ рассмотрены основные зарядовые и спиновые взаимодействия, прежде всего спинзависимый перенос эффективных композитных бозонов, и специфические особенности формирования спиновой структуры в системах с анти-JTдиспропорционированием.

В разд. 2 и 3 мы обсуждаем модель зарядовых триплетов, псевдоспиновый формализм и эффективный гамильтониан CD-фазы JT-магнетиков. Разделы 4 и 5 посвящены анализу спиновых взаимодействий и спиновой структуры ортоникелатов RNiO₃ и ортоманганитов RMnO₃ соответственно. Краткие выводы представлены в разд. 6.

2. МОДЕЛЬ ЗАРЯДОВЫХ ТРИПЛЕТОВ: ПСЕВДОСПИНОВЫЙ ФОРМАЛИЗМ

Следуя замечательной идее Райса и Снеддона [20], развитой нами для 2D-купратов и других JT-магнетиков [3,4,13,21,22], мы предлагаем обобщенную модель эффективных зарядовых триплетов для описания электронной структуры и фазовых диаграмм JT-магнетиков типа RNiO₃ или RMnO₃, которая предполагает рассмотрение некоторой высокосимметричной «родительской» конфигурации с идеальными октаэдрами NiO₆ или MnO₆, низкоэнергетическое состояние которой образовано зарядовым триплетом $[NiO_6]^{10-,9-,8-}$ (номинально $Ni^{2+,3+,4+}$) или $[MnO_6]^{10-,9-,8-}$ (номинально Mn^{2+,3+,4+}) с различными спиновыми и орбитальными основными состояниями. Мы связываем три зарядовых состояния кластера NiO₆ или MnO₆ с тремя проекциями псевдоспина $\Sigma = 1$ и используем известную спиновую алгебру и другие методы, хорошо зарекомендовавшие себя для спиновых магнетиков, для описания зарядовых степеней свободы JT-магнетиков в «координатном» представлении. Псевдоспиновая, спиновая и орбитальная структуры трех зарядовых центров NiO₆ и MnO₆ в ортоникелатах RNiO₃ и ортоманганитах RMnO₃ представлены в табл. 2 и 3 соответственно.

Формально локальный псевдоспин $\Sigma = 1$ предполагает наличие восьми (трех «дипольных» и пяти «квадрупольных») независимых операторов и соответствующих параметров локального зарядового порядка. В неприводимых компонентах это

$$\Sigma_0 = \Sigma_z;$$

$$\Sigma_{\pm} = \mp \frac{1}{\sqrt{2}} (\Sigma_x \pm i\Sigma_y);$$

$$\Sigma_z^2; \quad \Sigma_{\pm}^2;$$

$$T_{\pm} = \frac{1}{2} \{\Sigma_z, \Sigma_{\pm}\}.$$

Величина $n_{e_g} = 1 - \langle \hat{\Sigma}_z \rangle$ — среднее число e_g -электронов на узле, а среднее $\Delta n = \langle \hat{\Sigma}_z \rangle$ определяет отклонение от «половинного» заполнения.

Операторы

$$P_0 = (1 - \Sigma_z^2), \quad P_{\pm} = \frac{1}{2} \Sigma_z^2 (1 \pm \Sigma_z)$$

являются фактически операторами проектирования на зарядовые состояния с псевдоспиновой проекцией $M = 0, \pm 1$ соответственно, а средние $\langle P_0 \rangle, \langle P_{\pm} \rangle$ — это фактически локальные плотности для соответствующих зарядовых состояний.

Операторы Σ_{\pm} и T_{\pm} изменяют проекцию псевдоспина на ± 1 . Оператор Σ_{\pm}^2 изменяет проекцию псевдоспина на ± 2 , поэтому его можно рассматривать как оператор рождения/уничтожения эффективного композитного бозона. Соответствующие локальные средние $\langle \Sigma_{\pm} \rangle$, $\langle T_{\pm} \rangle$, $\langle \Sigma_{\pm}^2 \rangle$ будут описывать различные варианты «недиагонального» зарядового порядка, в частности когерентные металлические и сверхпроводящие состояния. Учитывая спиновые и орбитальные состояния для зарядовых компонент, мы должны расширить локальное гильбертово пространство, в частности для никелатов, до «псевдоспин-орбитально-спинового октета»

$$|\Sigma M; \Gamma \mu; Sm\rangle = |1M; \Gamma \mu; Sm\rangle,$$

включающего JT-спин-орбитальный квартет $|10; E_g \mu; \frac{1}{2} \nu \rangle$ с M = 0 и спин-зарядовый квартет с $M = \pm 1$, включающий синглет

$$|1+1; A_{1q}0; 00\rangle$$

 $|1-1; A_{2q}0; 1m\rangle,$

и триплет

где

$$\mu = 0, 2, \quad \nu = \pm \frac{1}{2}, \quad m = 0, \pm 1,$$

 $|E_g 0\rangle \propto d_{z^2}, \quad |E_g 2\rangle \propto d_{x^2 - y^2},$

 $\Gamma = A_{1g}, A_{2g}, E_g$ — неприводимое представление точечной группы O_h . Будем рассматривать JTмагнетик в общем случае как систему таких «октетов». Такой подход позволяет в наиболее общем виде учесть эффекты конкуренции различных степеней свободы.

3. ЭФФЕКТИВНЫЙ ГАМИЛЬТОНИАН СИСТЕМЫ ЗАРЯДОВЫХ ТРИПЛЕТОВ

3.1. Атомный предел: зарядовые корреляции, классическое диспропорционирование

Результат конкуренции между эффектом Яна– Теллера с орбитальным упорядочением и анти-JTдиспропрционированием определяется прежде всего эффектами локальных и нелокальных зарядовых корреляций. Эффективный гамильтониан локальных зарядовых корреляций

$$\hat{H}_{loc} = \frac{U}{2} \sum_{i} \hat{\Sigma}_{iz}^2 \tag{5}$$

— аналог одноионной аксиальной спиновой анизотропии — описывает эффекты «затравочного» псевдоспинового расщепления. Положительные значения параметра локальных корреляций U > 0 стабилизируют систему JT-центров, т.е. центров типа $[\text{NiO}_6]^{9-}$, соответствующих проекции псевдоспина M = 0, тогда как отрицательные значения U < 0

<i>d</i> -центр	Ион	Кластер	Проекция псевдоспина	Спин	Орбитальное состояние
d^8	Ni^{2+}	$[NiO_6]^{10-}$	M = -1	S = 1	A_{2g}
d^7	Ni ³⁺	$[NiO_{6}]^{9-}$	M = 0	S = 1/2	E_g
d^6	Ni ⁴⁺	$[NiO_{6}]^{8-}$	M = +1	S = 0	A_{1g}

Таблица 2. Псевдоспиновая, спиновая и орбитальная структуры трех зарядовых центров NiO_6 в ортоникелатах $RNiO_3$

Таблица 3. Псевдоспиновая, спиновая и орбитальная структуры трех зарядовых центров MnO₆ в ортоманганитах RMnO₃

<i>d</i> -центр	Ион	Кластер	Проекция псевдоспина	Спин	Орбитальное состояние
d^5	Mn^{2+}	$[MnO_6]^{10-}$	M = -1	S = 5/2	A_{1g}
d^4	Mn^{3+}	$[MnO_{6}]^{9-}$	M = 0	S = 1/2	E_g
d^3	Mn^{4+}	$[\mathrm{MnO}_6]^{8-}$	M = +1	S = 3/2	A_{2g}

стабилизируют диспропорционированную систему спин-зарядовых центров типа $[NiO_6]^{10-,8-}$, соответствующих проекции псевдоспина $M = \pm 1$.

Эффективный гамильтониан нелокальных зарядовых корреляций

$$\hat{H}_{nloc} = \frac{1}{2} \sum_{i \neq j} V_{ij} \hat{\Sigma}_{iz} \hat{\Sigma}_{jz}$$
(6)

— аналог двухионной спиновой анизотропии, или изинговского обмена — вносит, возможно, основной вклад в стабилизацию CD-фазы в ее классическом варианте зарядового упорядочения (СО). Действительно, в простейшем случае короткодействующего nn-взаимодействия с очевидно положительным знаком параметра нелокальных корреляций $V_{nn} > 0$ оператор H_{nloc} непосредственно стабилизирует СОфазу с «антиферро»-упорядочением G-типа электронных $[NiO_6]^{10-}$ (M = -1) и дырочных $[NiO_6]^{8-}$ (M = +1) центров. При положительном знаке параметра локальных корреляций U >0 формирование классического зарядового порядка в идеализированном кубическом перовските с учетом взаимодействия только ближайших соседей происходит при V > V_{cr}, где в приближении молекулярного поля

$$V_{cr} = \frac{U}{z} = \frac{1}{6} U$$

(z — число ближайших соседей).

3.2. Двухчастичный перенос: квантовое диспропорционирование, бозонный двойной обмен

Актуальное зарядовое, а во многом и магнитное упорядочение в CD-фазе JT-магнетиков определя-

ется конкуренцией нелокальных корреляций (6) и двухчастичного переноса

$$\hat{H}_{tr}^{(2)} = -\frac{1}{2} \sum_{i \neq j} t_{ij}^b \left(\hat{\Sigma}_{i+}^2 \hat{\Sigma}_{j-}^2 + \hat{\Sigma}_{i-}^2 \hat{\Sigma}_{j+}^2 \right), \quad (7)$$

— переноса эффективных электронных/дырочных спин-триплетных композитных бозонов с конфигурацией e_g^2 ; ${}^3A_{1g}/\underline{e}_g^2$; ${}^3A_{1g}$ и интегралом переноса t_{ij}^b . Вводя операторы рождения \hat{B}_{μ}^{\dagger} и уничтожения \hat{B}_{μ} эффективного композитного бозона и явно выделяя спиновую компоненту $\mu = 0, \pm 1$, перепишем гамильтониан $\hat{H}_{tr}^{(2)}$ в виде

$$\hat{H}_{tr}^{(2)} = -\sum_{i \neq j,\mu} t_{ij}^b \hat{B}_{i\mu}^\dagger \hat{B}_{j\mu} \,. \tag{8}$$

«Квантовый» оператор переноса $\hat{H}_{tr}^{(2)}$, в отличие от «классических» корреляционных вкладов (5) и (6), не сохраняет проекцию локального псевдоспина Σ_{iz} , т. е. локальное зарядовое состояние. Другими словами, этот оператор, не меняя проекции полного псевдоспина (полного заряда), приводит к переносу зарядовой плотности со смешиванием локальных зарядовых состояний с проекциями псевдоспина $M = \pm 1$, к появлению неопределенности зарядового состояния кластеров NiO₆ со средним зарядом (валентностью) [NiO₆]^{9± δ} (Ni^{3± δ}) — формированию CDq-фазы квантового диспропорционирования. Действительно, учет двухчастичного переноса в приближении молекулярного поля приводит к формированию локальных квантовых суперпозиций

$$\left|\delta\right\rangle = \cos\alpha \left|+1\right\rangle + \sin\alpha \left|-1\right\rangle,\tag{9}$$

где $\delta = \langle \Sigma_z \rangle = \cos 2\alpha$. Естественно, что квантовые суперпозиции (9) при $|\delta| < 1$ принципиально отли-

чаются от классических состояний с соответствующей зарядовой плотностью. Так, при $\delta = 0$ мы имеем дело с суперпозицией состояний типа Ni²⁺ и Ni⁴⁺, а не с состоянием типа Ni³⁺. Для различения классических и квантовых состояний с формально одинаковой величиной δ можно использовать величину локального параметра порядка $\langle \Sigma_z^2 \rangle$, равного единице для любых суперпозиций (9) и равного нулю для состояния типа Ni³⁺, соответствующего проекции зарядового псевдоспина M = 0.

Перенос эффективного локального композитного спин-триплетного бозона соответствует переносу не только зарядовой, но и спиновой плотности с сохранением проекции обычного спина, но появлением неопределенности величины локального спина, так что оператор $\hat{H}_{tr}^{(2)}$ является фактически и «нетрадиционным» спиновым оператором, с которым, по аналогии с традиционным двойным обменом [23–25] можно связать «бозонный» двойной обмен. Однако эта спиновая зависимость нетривиальна. Гамильтониан, инициирующий перенос, является бесспиновым, что позволяет в полуклассическом приближении [24, 26] представить гамильтониан $\hat{H}_{tr}^{(2)}$ как

$$\hat{H}_{tr}^{(2)} = -\sum_{i \neq j,\mu} t_{ij}^b S_{ij} \hat{B}_i^{\dagger} \hat{B}_j , \qquad (10)$$

где S_{ij} — интеграл перекрывания спиновых функций в единой системе координат, зависящий от взаимной ориентации спиновых/магнитных моментов \mathbf{S}_i и \mathbf{S}_j . Фактор S_{ij} очевидно максимален при параллельной ориентации магнитных моментов соседних узлов, что традиционно связывают с ферромагнитным характером двойного обмена и попытками ввести эффективный спин-гамильтониан типа Гейзенберга. Однако гамильтониан переноса не допускает разделение зарядовых и спиновых степеней свободы, а появление квантовой неопределенности величины локального спина с локальной спиновой плотностью в суперпозициях (9),

$$\rho_s = \sin^2 \alpha = \frac{1 \pm |\delta|}{2},\tag{11}$$

указывает на принципиальную невозможность сопоставить оператору переноса эффективный спингамильтониан, как это часто делается в теории традиционного («одночастичного») двойного обмена [23–26].

Обратим внимание на соотношение матричных элементов, точнее, средних значений операторов нелокальных корреляций и бозонного переноса в состоянии $|\delta_1 \delta_2\rangle$ пары ближайших центров, описываемых квантовыми суперпозициями (9):

$$\langle \delta_1 \delta_2 | \hat{H}_{nloc} | \delta_1 \delta_2 \rangle = V \cos 2\alpha_1 \cos 2\alpha_2, \qquad (12)$$

$$\langle \delta_1 \delta_2 | \hat{H}_{tr}^{(2)} | \delta_1 \delta_2 \rangle = -\frac{1}{2} t^b S_{12} \sin 2\alpha_1 \sin 2\alpha_2.$$
 (13)

Если в первом случае минимум (-V) реализуется только для классического диспропорционирования $(\alpha_1 = 0, \alpha_2 = \pi/2$ или наоборот $\alpha_2 = 0, \alpha_1 = \pi/2)$, то во втором случае минимум $(-\frac{1}{2}t^b)$ реализуется для предельно квантовых суперпозиций с $\alpha_1 = \alpha_2 = \pi/4$, но $S_{12} = 1$, т. е. при ферромагнитной ориентации спинов. Кстати, наличие спинового фактора S_{12} указывает на существенную редукцию энергии бозонного переноса в спин-парамагнитной фазе.

Очевидно, что простейшая классическая модель магнитной структуры JT-магнетиков с конкуренцией традиционного сверхобмена и бозонного двойного обмена должна представлять решетку магнитных моментов с величиной $0 \le \mu \le 2\mu_B (3\mu_B \le \mu \le 5\mu_B)$ в однозонных (двухзонных) JT-магнетиках, ориентация и реальная величина которых определяется из условия минимума полной энергии, включая и бесспиновые локальные и нелокальные корреляции, а также условия спин-зарядовой кинематики. К сожалению, пока даже эта классическая задача с тремя параметрами локального порядка — углом α , определяющим квантовую суперпозицию (9), и углами θ , ϕ ориентации локального магнитного момента, далека от решения.

В отличие и от заряд-зарядового взаимодействия \hat{H}_{nloc} (6) двухчастичный перенос стабилизирует квантовую CDq-фазу типа волны спин-зарядовой плотности. Таким образом, характер зарядоводиспропорционированного состояния JT-магнетика будет определяться CO–CDq-конкуренцией, т.е. конкуренцией двух двухцентровых взаимодействий—потенциальной энергии \hat{H}_{nloc} (6) и кинетической энергии композитных бозонов $\hat{H}_{tr}^{(2)}$.

Действительно, в СО-фазе двухчастичный перенос «не работает» и, наоборот, в предельно квантовом случае $\delta = 0$ вклад нелокальных корреляций выключается. Более того, результатом этой конкуренции является появление фазового перехода СО–СDq. Предварительные расчеты в рамках теории эффективного поля показывают наличие высокотемпературного перехода NO–CO (квазиметалл–классическая диспропорционированная фаза) и при дальнейшем понижении температуры перехода СО–СDq из классической в квантовую диспропорционированную фазу. Скорее всего, переход CO–CDq совпадает с антиферромагнитным переходом.

Двухчастичный перенос (7), (8) во всех JTмагнетиках может быть реализован через два последовательных одночастичных процесса с переносом e_g -электрона следующим образом:

$$d_1^{n+1} + d_2^{n-1} \xrightarrow{e_q} d_1^n + d_2^n \xrightarrow{e_q} d_1^{n-1} + d_2^{n+1}$$
,

поэтому интеграл переноса композитного бозона t^b может быть оценен как

$$t^b = t_{e_g e_g}^2 / U \approx J_{kin}(e_g e_g), \qquad (14)$$

где $t_{e_ge_g}$ — интеграл одночастичного переноса для электрона e_g , U — средняя энергия переноса. Это означает, что двухчастичный бозонный интеграл переноса может быть непосредственно связан с кинетическим e_g -вкладом $J_{kin}(e_ge_g)$ в обменный интеграл Гейзенберга. И t^b , и $J_{kin}(e_ge_g)$ фактически определяются одночастичным механизмом переноса второго порядка.

Антиферромагнитный кинетический обменный вклад в $J(e_g e_g)$, связанный с переносом e_g -электрона на частично заполненную e_g -оболочку, может быть записан следующим образом [4, 27, 28]:

$$J(e_g e_g) = \frac{(t_{ss} + t_{\sigma\sigma} \cos\theta)^2}{2U}, \qquad (15)$$

где θ — угол сверхобменной связи катион-анионкатион, $t_{\sigma\sigma} \gg t_{ss}$ — положительно определенные интегралы одночастичного d-d-переноса с участием *о*- или *s*-связи соответственно. Угловая зависимость обменного интеграла $J(e_a e_a)$, полученная с использованием данных для ряда ортоферритов RFeO₃ и ортохромитов RCrO₃ (см., например, работы [27,28]), представлена на рис. 1. Прежде всего обратим внимание на относительно большую величину $J(e_{q}e_{q})$, а также на то, что с учетом известных данных по углам связи θ в ортоникелатах [29,30] обменный интеграл $J(e_a e_a)$, а значит и интеграл переноса эффективного композитного бозона t^b , будут расти как минимум в два раза при переходе от LuNiO₃ к LaNiO₃. Кстати, использование популярного приближения

$$J(e_g e_g) \propto \cos^2 \theta \tag{16}$$

дает в том же интервале углов θ рост интеграла $J(e_q e_q)$ всего лишь на 20%.

Еще раз подчеркнем, что полученные выше результаты, в частности оценка величины интеграла переноса эффективного композитного бозона и ведущего вклада в сверхобменное взаимодействие, универсальны для CD-фазы всех JT-магнетиков.

4. ОСОБЕННОСТИ СПИНОВЫХ ВЗАИМОДЕЙСТВИЙ В ОРТОНИКЕЛАТАХ RNIO3

В орторомбических соединениях RNiO₃ (R = = Pr,...,Lu) происходит фазовый переход первого рода квазиметалл-изолятор (bad metal-insulator) в зарядово-упорядоченное диэлектрическое состояние при охлаждении ниже T_{MIT} в диапазоне от 130 К для Pr до 550-600 К для тяжелых редких земель [29-31]. Всем им присущи более или менее четкие признаки зарядового диспропорционирования с двумя типами Ni-центров, соответствующих чередующимся большим [NiO₆]¹⁰⁻ (Ni²⁺-центр) и малым [NiO₆]⁸⁻ (Ni⁴⁺-центр) октаэдрам. При низких температурах в ортоникелатах происходит магнитный фазовый переход к неизвестной ранее для перовскитных 3*d*-соединений антиферромагнитной структуре, определяемой в орторомбических координатах вектором распространения $\mathbf{k} = (1/2, 0, 1/2)$ [29, 31], что свидетельствует о необычном сосуществовании ферро- и антиферромагнитных связей. Вообще говоря, упорядочение (1/2,0,1/2), или (1/4,1/4,1/4) в псевдокубических координатах предполагает три возможные магнитные структуры, из которых две коллинеарные и одна неколлинеарная [29, 32], однако, к сожалению, сегодня отсутствуют надежные достоверные экспериментальные данные о магнитной структуре ортоникелатов, что связано и с отсутствием высококачественных монокристаллов, и с неоднозначностью данных как магнитной нейтронографии, так и локальных методов типа резонансного рассеяния рентгеновских лучей (polarized resonant X-ray scattering, RXS) [33-35]. Более того, RXS-данные [34] для тонких пленок NdNiO₃ различной толщины показали близость энергий коллинеарных и неколлинеарной магнитных структур типа (1/4, 1/4, 1/4). Кстати, неколлинеарный спиновый порядок в никелатах проявляет киральные свойства [35] и потенциально может приводить к появлению спин-зависимого ферроэлектричества, однако эти системы остаются сравнительно мало исследованными как потенциальные мультиферроики [32, 36, 37]. Обратим внимание на обнаруженные в работе [33] проявления эффектов магнитной анизотропии и слабого ферромагнетизма в NdNiO₃, типичные для многих 3*d*-перовскитов.

В рамках предлагаемой нами модели зарядовых триплетов мы приходим к необходимости принципиального пересмотра традиционного подхода к описанию перехода металл-изолятор в ЈТ-магнетиках. В ортоникелатах спонтанный переход квазиметаллизолятор связывается с переходом NO-CO из неупорядоченного квазиметаллического (bad metal) состояния в классическую диспропорционированную фазу СО с зарядовым упорядочением G-типа и последующим фазовым переходом СО-СД в фазу квантового диспропорционирования CDq. С магнитной точки зрения классическая фаза СО в простейшей модели представляет парамагнетик с упорядочением G-типа магнитных (S = 1) Ni²⁺-центров и немагнитных Ni⁴⁺-центров с «выключенным» сверхобменом ближайших соседей. Переход СО-СД сопровождается перераспределением как зарядовой, так и спиновой плотности с «включением» ферромагнитного механизма бозонного двойного обмена и антиферромагнитного сверхобмена ближайших соседей, конкуренция которых приводит к формированию необычного магнитного порядка с вектором распространения $\mathbf{k} = (1/4, 1/4, 1/4)$ в псевдокубических координатах с сосуществованием ферро- и антиферромагнитных связей.

Эффективный спин-гамильтониан JT-магнетика в общем случае имеет сложную структуру. Многие особенности спиновых взаимодействий JT-центров рассмотрены в известной работе Кугеля и Хомского [1]. Ниже мы рассмотрим вклад в эффективный спин-гамильтониан JT-магнетика RNiO₃ зарядовых спин-триплетных состояний [NiO₆]¹⁰⁻ (номинально Ni²⁺), соответствующий компоненте M = -1 зарядового псевдоспина, в CO-фазе, который можно представить как

$$\hat{H}_{spin}^{eff} = \hat{P}_{-1} \hat{H}_{spin} \hat{P}_{-1} , \qquad (17)$$

Рис. 2. Иллюстрация возможных магнитных структур с $\mathbf{k} = (1/2, 0, 1/2)$ в ортоникелатах: слева — модельный никелат с классическим зарядовым диспропорционированием; справа — модельный никелат с квантовым зарядовым диспропорционированием

где

$$\hat{H}_{spin} = \sum_{i>j} J_{ij} \left(\hat{\mathbf{S}}_{i} \cdot \hat{\mathbf{S}}_{j} \right) + \sum_{i>j} j_{ij} \left(\hat{\mathbf{S}}_{i} \cdot \hat{\mathbf{S}}_{j} \right)^{2} + \sum_{i>j} \mathbf{d}_{ij} \cdot \left[\hat{\mathbf{S}}_{i} \times \hat{\mathbf{S}}_{j} \right] + K_{SIA} \sum_{i} \left(\mathbf{m}_{i} \cdot \hat{\mathbf{S}}_{i} \right) \left(\mathbf{n}_{i} \cdot \hat{\mathbf{S}}_{i} \right) + V_{TIA} - \sum_{i} \left(\mathbf{h} \cdot \hat{\mathbf{S}}_{i} \right), \quad (18)$$

где J_{ij} и j_{ij} — билинейный и биквадратичный изотропные обменные интегралы соответственно, \mathbf{d}_{ij} вектор Дзялошинского, K_{SIA} — константа анизотропии, **m** и **n** — единичные векторы, определяющие две характеристические оси одноионной анизотропии второго порядка, V_{TIA} — двухионная симметричная билинейная и биквадратичная анизотропия, **h** — внешнее поле. Обратим особое внимание на роль антисимметричного обмена Дзялошинского – Мория в ортоникелатах, приводящего к слабому ферромагнетизму в антиферромагнитной фазе либо к киральным спиральным структурам в ферромагнитной фазе.

Казалось бы, что большая величина сверхобменного интеграла $J(e_g e_g) = J(\text{Ni}^{2+} \text{Ni}^{2+})$ для ближайших соседей в структуре ортоникелатов предполагает высокие температуры Нееля антиферромагнитного упорядочения. Действительно, в пренебрежении зарядовыми взаимодействиями — локальными и нелокальными корреляциями и двухчастичным переносом — в полностью диспропорционированной фазе LaNiO₃ с 50-процентными концентрациями магнитных Ni²⁺-центров (S = 1) и немагнитных Ni⁴⁺-центров, соответствующей разбавленному антиферромагнетику G-типа, для температуры Нееля в приближении молекулярного поля получим

$$T_N \approx \frac{1}{2} \frac{zS(S+1)}{3} J = 2J \approx 600 \text{ K}.$$

Очевидно, что реализации антиферромагнитного спинового упорядочения G-типа со столь высокой температурой Нееля «мешают» сильные зарядовые взаимодействия, приводящие либо к классическому зарядовому СО-упорядочению G-типа, либо к более сложному квантовому зарядовому порядку — CDq-фазе квантового диспропорционирования. Классический зарядовый порядок G-типа соответствует распределению параметра $\delta = \pm 1$ по подрешеткам, т.е. упорядоченной системе магнитных Ni²⁺-центров (S = 1), окруженных ближайшими немагнитными Ni⁴⁺-центрами, что приводит к полному «выключению» сильного сверхобменного взаимодействия ближайших соседей. Иллюстрация «плоского» варианта структуры (1/2, 0, 1/2) для модельного никелата с классическим зарядовым диспропорционированием представлена на рис. 2 (левая панель). Однако эти выводы не согласуются с данными магнитной нейтронографии [38-40], свидетельствующими о перераспределении спиновой, а значит, и зарядовой плотности в никелатах между подрешетками с формированием локальных зарядовых состояний со смешанной валентностью типа $[NiO_6]^{(9-\delta)-}$, или упрощенно $Ni^{3-\delta}$ $(-1 \le \delta \le +1)$, представляющих локальные квантовые суперпозиции (9) и являющихся результатом учета парного переноса, или переноса эффективных композитных бозонов.

С учетом спиновых состояний матричный элемент оператора двухчастичного переноса будет пропорционален интегралу перекрывания спиновых состояний $\langle \chi(1)|\chi(2)\rangle$, который в простейшем случае можно связать с взаимной ориентацией спинов \mathbf{S}_1 и \mathbf{S}_2 :

$$\langle \chi_{11}(\mathbf{S}_1 \parallel \mathbf{z}_1) | \chi_{11}(\mathbf{S}_2 \parallel \mathbf{z}_2) \rangle$$

В локальной системе координат с осью **z**, направленной вдоль соответствующего спинового момента, спиновые функции $\chi(1)$ и $\chi(2)$ имеют вид $\chi_{11}(\mathbf{S}_1 \parallel \mathbf{z}_1)$ и $\chi_{11}(\mathbf{S}_2 \parallel \mathbf{z}_2)$ (S = 1, $M_S = 1$) соответственно. Используя преобразования поворота для перехода к единой системе координат в интеграле

перекрывания спиновых функций, получим

$$\langle \chi_{11}(\mathbf{S}_{1} \parallel \mathbf{z}_{1}) | \chi_{11}(\mathbf{S}_{2} \parallel \mathbf{z}_{2}) \rangle =$$

$$= \sum_{M'} D_{1M'}^{1}(\omega_{12}) \langle \chi_{11}(1) | \chi_{1M'}(2) \rangle =$$

$$= \sum_{M'} D_{1M'}^{1}(0, \theta_{12}, 0) \delta_{1M'} =$$

$$= D_{11}^{1}(0, \theta_{12}, 0) = d_{11}^{1}(\theta_{12}) =$$

$$= \frac{1 + \cos \theta_{12}}{2} = \cos^{2} \frac{\theta}{2}, \quad (19)$$

где $D_{1M'}^1(\omega_{12})$ — функции Вигнера [41], ω_{12} — углы Эйлера, определяющие преобразование поворота между локальными системами узлов 1 и 2. Обратим внимание на появление углового фактора $\cos^2(\theta/2)$, отличного от традиционного для двойного обмена фактора $\cos(\theta/2)$ [24, 25]. Строго говоря, в единой системе координат фактор S_{ij} будет зависеть от полярных и азимутальных углов векторов \mathbf{S}_i и \mathbf{S}_j :

$$S_{ij} = \sum_{M} \langle \chi_{1M}(i) | \chi_{1M}(j) \rangle =$$

= $\sum_{M} D_{1M}^{1^*}(\phi_i, \theta_i, 0) D_{1M}^1(\phi_j, \theta_j, 0), \quad (20)$

где θ_i и ϕ_i (θ_j и ϕ_j) — полярный и азимутальный углы вектора спина на узле i (j).

Иллюстрация «плоского» варианта неколлинеарной структуры (1/2, 0, 1/2) для модельного никелата с полным квантовым зарядовым диспропорционированием ($\delta = 0$) представлена на рис. 2 (правая панель).

Двухчастичный транспорт в немагнитной решетке стабилизирует объемную ферромагнитную Fфазу с энергией, сравнимой с энергией объемной антиферромагнитной фазы G-типа, что следует из близких величин интеграла переноса t^b и обменного интеграла $J(e_g e_g)$. Таким образом, реальная магнитная структура (1/2, 0, 1/2), наблюдаемая во всех ортоникелатах RNiO₃, является результатом своеобразной F-G-конкуренции ферромагнитного упорядочения F-типа и антиферромагнитного упорядочения G-типа. Близкие энергии двух фаз позволяют оценить температуру Нееля в ортоникелатах Pr и Nd с полным квантовым диспропорционированием $(\delta = 0,$ спиновая плотность $\rho_s = 1/2)$ как

$$T_N \approx \frac{1}{4} \frac{zS(S+1)}{3} J = J \approx 300 \text{ K},$$

что вполне согласуется с данными работы [29] (см. в ней рис. 10). Выбор «ферромагнитной» оси b связан, скорее всего, с особенностями структурной чувствительности параметров t^b и $J(e_g e_g)$. Постоянство характера магнитной структуры по всему ряду ортоникелатов RNiO₃ связано с близкой угловой зависимостью параметров t^b и $J(e_q e_q)$.

5. ПЕРЕНОС ЗАРЯДА И СПИНОВЫЕ ВЗАИМОДЕЙСТВИЯ В СD-ФАЗЕ РЕДКОЗЕМЕЛЬНЫХ ОРТОМАНГАНИТОВ

Несмотря на то, что на протяжении многих десятилетий редкоземельные ортоманганиты RMnO₃ и особенно системы с неизовалентным замещением (дырочным допированием) типа $La_{1-x}Sr_xMnO_3$ являются предметом интенсивных экспериментальных и теоретических исследований, природа формирования электронной и магнитной структур, колоссального магнитосопротивления манганитов остается предметом дискуссий. Во многом это объясняется тем, что в самом популярном манганите LaMnO₃ сосуществуют несколько анти- и ферромагнитных фаз [42]. Фазовое расслоение сегодня считается одним из основных механизмов, определяющих необычные свойства манганитов [19]. Однако вопрос о электронной структуре конкурирующих фаз, кроме основной низкотемпературной орбитально упорядоченной диэлектрической фазы с кооперативным ЈТ-упорядочением, сопровождаемым антиферромагнитным упорядочением А-типа (A-AFM), остается открытым.

На наш взгляд, ортоманганиты являются JTмагнетиками, неустойчивыми относительно переноса заряда и перехода в диспропорционированное состояние, так что CD- и CDq-фазы являются главными конкурентами A-AFM-фазы в «борьбе» за основное состояние в манганитах [12].

Высокотемпературная неупорядоченная зарядово-диспропорционированная квазиметаллическая фаза была постулирована на основе экспериментальных данных для LaMnO₃ разными авторами [43-45]. При понижении температуры наблюдается фазовый переход первого рода при $T = T_{JT} (T_{JT} \approx 750 \text{ K})$ к низкотемпературной А-АFМ-фазе ниже T_N ($T_N \approx 140$ K) [12, 42, 43]. На рис. 3 представлены температурные зависимости относительных объемов f_{CD} и $1 - f_{CD}$ этих фаз, построенные нами [12] по данным резонансного рассеяния рентгеновских лучей [46, 47]. Неизовалентное замещение и/или нестехиометрия, оптическая накачка приводят к росту диспропорционированной фазы, и таким манганитам наряду с металлическим ферромагнетизмом с колоссальным магнитосопротивлением присущи многие свойства, характерные даже для локальной спин-триплетной сверхпроводимости [12, 48–53].

Отличительные признаки высокотемпературных диспропорционированных фаз обнаружены и в других манганитах, таких как $LaMn_7O_{12}$ [54], YBaMn_2O₆ [55]. Кроме того, орторомбические редкоземельные манганиты RMnO₃ (R = Tb) характеризуются неколлинеарными спин-спиральными структурами и образуют «модельное семейство» систем со спин-индуцируемым ферроэлектричеством [37].

Пример LaMnO₃ показывает необходимость тщательного анализа всех возможных механизмов формирования электронной и спиновой структуры JTмагнетиков с использованием теоретических подходов, выходящих за рамки *ab initio* методик, не дающих физически прозрачных адекватных представлений о конкуренции зарядовых, орбитальных, спиновых и решеточных степеней свободы.

Как отмечено во Введении, авторы большинства работ недооценивают тот факт, что ортоманганиты являются JT-магнетиками, неустойчивыми относительно переноса заряда [56] с формированием классических или квантовых диспропорционированных фаз. Ниже мы рассмотрим особенности спиновых взааимодействий и спиновых структур в диспропорционированном состоянии ортоманганитов. Отметим, что этот анализ применим и для изоструктурных манганитам ферратам типа CaFeO₃ с изоэлектронной манганитам 3*d*-подсистемой (см. табл. 1).

5.1. Классическое диспропорционирование в ортоманганитах

В атомном пределе без учета эффектов двухчастичного (бозонного) транспорта диспропорционированная CD-фаза JT-магнетиков типа ортоманганитов RMnO₃ или ферратов CaFeO₃ на основе d⁴-конфигураций представляет собой систему электронных Mn²⁺- или Fe³⁺-центров S-типа с конфигурацией d^5 и спином $S{=}5/2$ и дырочных Mn⁴⁺- или Fe⁵⁺-центров S-типа с конфигурацией d^3 и спином S=3/2. Формально эти системы изоструктурны и изоэлектронны ортоферритам-ортохромитам типа смешанным УFe0.5Cr0.5O3, известным как антиферромагнетики G-типа с конкурирующими знаками векторов Дзялошинского Fe-Fe, Cr-Cr и Fe-Cr – слабые ферримагнетики [28, 57]. Эти материалы обладают целым комплексом удивительных магнитных свойств — точками температурной компенсации, явлением отрицательного намагничивания и об-

Рис. 3. Схематическая фазовая диаграмма $T-f_{CD}$ манганита LaMnO₃, f_{CD} — объемная доля диспропорционированной CD-фазы. Маленькими и большими кружками показаны экспериментальные данные из работ [46, 47], преобразованные в результирующую объемную долю статических и динамических областей CD-фазы. Различным цветом указаны JT-фаза антиферромагнитного изолятора (A-AFM), фаза орбитального ближнего порядка вблизи T_{JT} , области динамической и статической CD-фаз (детали, в частности характерные температуры, см. в работе [12])

менного смещения (exchange bias effect), спиновой переориентацией [28,58,59]. Температура Нееля для $YFe_{0.5}Cr_{0.5}O_3$, которая по разным данным находится вблизи 300 K, может служить хорошей оценкой и для CD-фазы в ортоманганитах и ферратах с углом сверхобменной связи катион–анион–катион, близкой к средней для $YFe_{0.5}Cr_{0.5}O_3$ ($\langle \theta \rangle \approx 144^{\circ}$).

5.2. Квантовое диспропорционирование в ортоманганитах: бозонный двойной обмен

Традиционный двойной обмен, индуцируемый переносом электрона (дырки), исторически был введен Зинером [23] и развит в работах Андерсона и Хасегавы [24] и де Жена [25] для объяснения появления ферромагнетизма в ортоманганитах с неизовалентным допированием.

Интересно, что с помощью алгебры Рака (Racah) спиновый фактор S_{ij} в выражении для интеграла переноса (8) частицы со спином *s*, движущейся в магнитной матрице с локальными спинами *S* можно представить в единой форме в представлении полного спина пары $\mathbf{S}_t = \mathbf{S}_i + \mathbf{S}_j + \mathbf{s}$ [24,41]:

$$S_{ij} = \langle S_i, sS_j(S'_j), S_t M | S_i s(S'_i), S_J, S'_t M' \rangle = \\ = \delta_{S_t, S'_t} \delta_{M, M'} (-1)^{S_i + S'_j + S_t} [S'_i, S'_j]^{1/2} \times \\ \times \left\{ \begin{array}{cc} S_i & s & S'_i \\ S_j & S_t & S'_j \end{array} \right\}, \quad (21)$$

где
$$[a,b] = (2a+1)(2b+1), \left\{ \begin{array}{ccc} S_i & s & S'_i \\ S_j & S_t & S'_j \end{array} \right\} -$$

6*j*-символ. При $S'_j = S_j + s$ это выражение воспроизводит известный результат работы Андерсона и Хасегавы [24]. Кстати, в рамках теории традиционного двойного обмена для ортоманганитов с дырочным допированием при s = 1/2, $S_i = S_j = S$, $S'_i = S'_j = S - 1/2$ получим результат Андерсона и Хасегавы [24]

$$S_{ij} = \frac{S_t + 1/2}{2S + 1},$$
(22)

что по величине и знаку отличается от результата

$$S_{ij} = (-1)^{2S - S_t - 1/2} \frac{S_t + 1/2}{2S}, \qquad (23)$$

приведенного в известной работе [26].

В отличие от однозонных JT-магнетиков на основе конфигураций d^1 , d^7 и d^9 , в которых эффективный спин-триплетный композитный бозон движется в немагнитной решетке, в двухзонных магнетиках на основе конфигураций d^4 и d^6 спин-триплетный бозон движется в магнитной решетке со спинами S = 3/2, что существенно усложняет анализ возможных магнитных структур. Так, спин-гамильтониан \mathcal{H}_s двухзонных JT-магнетиков будет иметь сложный вид даже с учетом только билинейного спинспинового изотропного обмена:

$$\mathcal{H}_{s} = \sum_{i>j} J_{ij}^{ll}(\hat{\mathbf{S}}_{i} \cdot \hat{\mathbf{S}}_{j}) + \sum_{i>j} J_{ij}^{bb}(\hat{\mathbf{s}}_{i} \cdot \hat{\mathbf{s}}_{j}) + \sum_{i>j} J_{ij}^{bl}(\hat{\mathbf{s}}_{i} \cdot \hat{\mathbf{S}}_{j}) + \sum_{i} J_{ii}^{bl}(\hat{\mathbf{s}}_{i} \cdot \hat{\mathbf{S}}_{i}), \quad (24)$$

где мы предполагаем локализованную t_{2g} -подоболочку. Первый член описывает обменное взаимодействие спинов S = 3/2 решетки, второй обменное взаимодействие между спин-триплетными бозонами, третий и четвертый — обмен между бозонами и спинами решетки, а последний член фактически описывает внутриатомный хундовский обмен. Для выполнения правила Хунда необходимо, чтобы обменный интеграл J_{ii}^{bl} был относительно большим и ферромагнитным.

Рис. 4. Спиновая структура ЕН-димера с пошаговым включением одно- и двухчастичного переноса заряда. Стрелки указывают на электрический дипольный момент для «затравочных» димерных конфигураций

Однако для анализа влияния двухчастичного (бозонного) переноса на спиновую структуру двухзонных JT-магнетиков мы воспользуемся предложенной Андерсоном [24] методикой и рассмотрим спиновую структуру электронно-дырочного (ЕН) димера в манганитах — пару Mn²⁺–Mn⁴⁺-центров, связанных как обычным сверхобменным d⁵–d³взаимодействием, так и двухчастичным переносом типа

$$\mathrm{Mn}^{2+} + \mathrm{Mn}^{4+} \leftrightarrow \mathrm{Mn}^{4+} + \mathrm{Mn}^{2+}$$
.

Суммарный спиновый момент этих ЕН-димеров равен $\mathbf{S} = \mathbf{S}_1 + \mathbf{S}_2$, где $\mathbf{S}_1 (S_1 = 5/2)$ и $\mathbf{S}_2 (S_2 = 3/2)$ спины конфигураций d^5 и d^3 соответственно, поэтому величина суммарного спина *S* принимает значения 1, 2, 3, 4. В простейшем приближении спиновая структура ЕН-димера в атомном пределе будет определяться изотропной сверхобменной связью

$$V_{ex} = J(d^5 d^3) \left(\mathbf{S}_1 \cdot \mathbf{S}_2\right),\tag{25}$$

где $J(d^5d^3)$ — сверхобменный интеграл d^5-d^3 (d^3-d^5) . Спиновая структура оператора двухчастичного переноса определяется матричным элементом (21) при $s = 1, S_i = S_j = 3/2, S'_i = S'_j = 5/2$:

$$\left\langle \frac{5}{2} \frac{3}{2}; SM \right| \hat{H}_{tr}^{(2)} \left| \frac{3}{2} \frac{5}{2}; SM \right\rangle = \\ = -t^b(S) = -\frac{1}{20} S(S+1) t^b, \quad (26)$$

где $t^b(S)$ — эффективный спин-зависимый интеграл переноса композитного бозона, $t^b > 0$ — бесспиновый интеграл переноса. Используя это выражение, мы можем ввести эффективную спин-операторную форму для оператора переноса бозона следующим образом:

$$\hat{H}_{B}^{eff} = -\frac{t^{b}}{20} \left[2(\hat{\mathbf{S}}_{1} \cdot \hat{\mathbf{S}}_{2}) + S_{1}(S_{1}+1) + S_{2}(S_{2}+1) \right], \quad (27)$$

что представляется принципиальным как для качественного, так и для количественного анализа влияния эффектов переноса бозонов на спиновую структуру CD-фазы двухзонных JT-магнетиков. Вклад бозонного двойного обмена формально соответствует ферромагнитной обменной связи с эффективным обменным интегралом $J_B = -\frac{1}{10} |t^b|$. Эффективный интеграл переноса композитного бозона сильно зависит от спинового состояния электронно-дырочной пары, уменьшаясь в десять раз при изменении полного спина пары от S = 4 до S = 1. В частности, мы приходим к сильному, почти двукратному, подавлению эффективного интеграла переноса в парамагнитной фазе по сравнению с его максимальным значением t^b для ферромагнитного упорядочения (S = 4).

Обычный гейзенберговский обмен d^5-d^3 (d^3-d^5) и нетрадиционный вклад двухчастичного бозонного переноса, или бозонного двойного обмена, могут быть легко диагонализованы в представлении суммарного спина ЕН-димера $\hat{\mathbf{S}}$ так, что для энергии ЕН-димера получаем

$$E_S = \frac{J(d^5d^3)}{2} \left[S(S+1) - \frac{25}{2} \right] \mp \frac{1}{20} S(S+1) t^b, \quad (28)$$

где « \mp » соответствует двум квантовым суперпозициям $|\pm\rangle$, записанным в спиновом представлении следующим образом:

$$|SM\rangle_{\pm} = \frac{1}{\sqrt{2}} \left(\left| \frac{5}{2} \frac{3}{2}; SM \right\rangle \pm \left| \frac{3}{2} \frac{5}{2}; SM \right\rangle \right), \quad (29)$$

с S- и P-типом симметрии соответственно.

Энергетический спектр ЕН-димера представлен на рис. 4 [4]. Прежде всего отметим, что, благодаря появлению *S*- и *P*-мод, этот спектр существенно отличается от спектров, типичных для обменносвязанных пар. Суммарный эффект гейзенберговского обмена и бозонного двойного обмена приводит к стабилизации высокоспинового S = 4 (ферромагнитного) состояния ЕН-димера при условии $t^b > 10J$ (см. левую панель на рис. 4) и низкоспинового S = 1(ферримагнитного) состояния в случае $t^b < 10J$ (см. правую панель на рис. 4). Спиновые состояния с промежуточными значениями S = 2, 3 соответствуют классическому неколлинеарному упорядочению. Интересно, что для $t^b = 10 J$ энергия состояний димера S-типа не зависит от величины полного спина, так что мы приходим к удивительному результату 24-кратного ($\sum_{S=1}^{S=4}(2S+1)$) вырождения основного состояния изолированного димера (см. центральную панель на рис. 4).

Для оценки величин t^b и $J(d^5d^3)$ и их зависимости от параметров кристаллической структуры мы можем обратиться к результатам комплексного теоретического и экспериментального анализа различных интегралов сверхобмена в ортоферритах RFeO₃, ортохромитах RCrO₃ и ортоферритахортохромитах RFe_{1-x}Cr_xO₃ с ионами Fe³⁺ и Cr³⁺ с электронными конфигурациями d^5 и d^3 соответственно [27, 28, 60]. Эти перовскиты изоструктурны со многими JT-магнетиками, включая (Ca,Sr,Ba)FeO₃, RMnO₃, (Ca,Sr,Ba)RuO₃.

Для интеграла переноса композитного бозона t^b воспользуемся соотношениями (14)–(16) и данными рис. 1. Сверхобменный интеграл d^5-d^3 представляет результат конкуренции антиферромагнитного и ферромагнитного вкладов [27,28]:

$$J_{\text{FeCr}} = J(d^5 d^3) =$$

$$= \frac{2}{15} \left(\frac{t_{\sigma\pi}^2}{U} \sin^2 \theta + \frac{t_{\pi\pi}^2}{U} (2 - \sin^2 \theta) \right) -$$

$$- \frac{\Delta E(35)}{10U} \left[\frac{(t_{ss} + t_{\sigma\sigma} \cos \theta)^2}{U} + \frac{t_{\sigma\pi}^2}{U} \sin^2 \theta \right]. \quad (30)$$

Здесь θ — угол связи катион–анион–катион, $t_{\sigma\sigma} > t_{\pi\sigma} > t_{\pi\pi} > t_{ss}$ — положительно определенные интегралы *d*–*d*-переноса, *U* — средняя энергия переноса (эффективная корреляционная энергия), $\Delta E(35)$ — разность энергий термов ${}^{3}E_{g}$ и ${}^{5}E_{g}$ конфигурации $t_{2g}^{3}e_{g}$.

На рис. 5 показана зависимость интегралов сверхобмена $J_{\text{FeCr}} = J(d^5d^3)$ и $|J_B| = \frac{1}{10}t^b$ от угла сверхобменной связи катион–анион–катион, характерного для ортоферритов и ортохромитов. Пустые прямоугольники для $J(d^5d^3)$ воспроизводят экспериментальные данные [60] с учетом ошибок измерения обменных интегралов и средних значений углов сверхобменных связей. Данные рис. 5 предсказыва-

Рис. 5. Угловые зависимости $J(d^5d^3)$ и $\frac{1}{10}t^b$, которые определяют эффективный интеграл $J_{eff}=J(d^5d^3)-\frac{1}{10}t^b$

ют смену знака для $J_{\rm FeCr}$ при $\theta_{cr} \approx 160-170^{\circ}$. Другими словами, сверхобменная связь $t_{2g}^3 e_g^2 - O^{2-} - t_{2g}^3$ становится ферромагнитной при $\theta \geq \theta_{cr}$. Кривая на рис. 5, описывающая величину $\frac{1}{10}t^b$, рассчитана на основе соотношения (15) и угловой зависимости $J(e_g e_g) \approx t^b$ с количественными оценками, основанными на анализе полного набора экспериментальных данных по величине обменных параметров для ортоферритов и ортохромитов [27,28,60] (см. рис. 1).

В отличие от сверхобменного интеграла $J(d^5d^3)$ величина эффективного интеграла двойного бозонного обмена $\frac{1}{10}t^b$ быстро убывает с уменьшением угла связи θ , так что при $\theta_{cr} \approx 142^\circ$ мы приходим к компенсации ферро- и антиферромагнитных вкладов в эффективный параметр обмена $J_{eff} = J(d^5d^3) - \frac{1}{10}t^b$ с вырождением S = 1, 2, 3, 4 и драматической трансформацией $S = 4 \rightarrow S = 1$ спинового основного состояния с десятикратным уменьшением эффективного интеграла переноса композитного бозона (см. (26)).

Результаты анализа угловой зависимости параметров $J(d^5d^3)$ и t^b , представленные на рис. 5, могут быть использованы для анализа спиновой структуры ЕН-димеров в двухзонных JT-магнитах со структурой перовскита, таких как манганиты, ферраты и рутенаты (см. табл. 1).

Так, например, для сверхобменной геометрии, характерной для LaMnO₃ [42] с углом связи Mn–O–Mn $\theta \approx 160^{\circ}$, мы находим $J(d^5d^3) \approx 0$ К и $J(e_g e_g) \approx t^b \approx 350$ К. Другими словами, для эффективного обменного интеграла J_{eff} мы приходим к довольно большой величине:

 $J_{eff} = J(d^5d^3) - 0.1t^b \approx -35$ К. Эти данные однозначно указывают на доминирующий ферромагнитный вклад механизма бозонного двойного обмена с основным ферромагнитным состоянием со спином S = 4 для ЕН-димера и максимальным «нередуцированным» значением интеграла переноса композитного бозона в CD-фазе LaMnO₃. Для углов сверхобменной связи $\theta \approx 145-143^{\circ}$, характерных для возможной CD-фазы тяжелых редкоземельных манганитов RMnO₃ (R = Tb, Dy, Ho, Y, Er) [42], отношение между $t^b \approx 150 \,\mathrm{K}$ и $J(d^5d^3) \approx 14 \, {\rm K}$ [60] приближается к критическому: $t^{b} = 10 J(d^{5}d^{3})$, что свидетельствует о дестабилизации ферромагнитного состояния для ЕН-димеров и формировании сильнофрустрированной системы с конкуренцией ферро- и антиферромагнитных взаимодействий.

В целом структурный фактор играет важную роль для стабилизации того или иного спинового состояния CD-фазы двухзонных JT-магнетиков, а также и величины эффективного интеграла переноса, а значит, эффективной массы композитного бозона. Мы полагаем, что изменение (уменьшение) угла сверхобменной связи катион–анион–катион с подавлением ферромагнитного взаимодействия и металлических свойств может быть основной причиной сильного эффекта замещения Sr на Ca в JTмагнетиках, таких как SrFeO₃, SrRuO₄, Sr₂RuO₄ и Sr₃Ru₂O₇.

6. ЗАКЛЮЧЕНИЕ

Ян-теллеровские магнетики являются одними из наиболее сложных объектов физики конденсированного состояния с конкуренцией зарядовых, орбитальных, спиновых и решеточных степеней свободы, что отличает их от популярных и достаточно простых спиновых магнетиков типа ферритов с единственной спиновой степенью свободы. Во ЈТ-магнетиках, неустойчивых относимногих тельно переноса заряда, формируется зарядоводиспропорционированная СD-фаза, формально эквивалентная системе эффективных композитных спин-триплетных бозонов, описание которой проводится нами в рамках модели зарядовых триплетов и псевдоспинового формализма с учетом эффектов локальных (\hat{H}_{loc}) и нелокальных (\hat{H}_{nloc}) корреляций, двухчастичного (бозонного) переноса $(\hat{H}_{tr}^{(2)})$ и традиционного сверхобмена $(U-V-t^b-J-t^b)$ модель). В рамках модели зарядовых триплетов

мы приходим к необходимости принципиального пересмотра традиционного подхода к описанию перехода металл-изолятор в ЈТ-магнетиках. Так, в ортоникелатах спонтанный переход квазиметаллизолятор связывается с переходом NO-CO из неупорядоченного квазиметаллического состояния (bad metal) в классическую диспропорционированную фазу СО с зарядовым упорядочением G-типа и последующим фазовым переходом CO-CDq в фазу квантового диспропорционирования CDq, критические температуры которых определяются конкуренцией между основными зарядовыми взаимодействиями. Принципиальной особенностью ЈТ-магнетиков с двухчастичным (бозонным) переносом является невозможность разделения зарядовых и спиновых степеней свободы. В общем случае спиновая зависимость гамильтониана двухчастичного переноса, или «бозонного» двойного обмена не может быть сведена к эффективному спин-гамильтониану Гейзенберга, а спин-зарядовая структура ЈТ-магнетиков определяется в результате минимизации энергии двойного обмена, сверхобмена и энергии спин-независимых нелокальных корреляций. Необычная магнитная структура ортоникелатов, определяемая «странным» вектором распространения $\mathbf{k} = (1/2, 0, 1/2)$ с сосуществованием ферро- и антиферромагнитных связей, является следствием конкуренции двухчастичного переноса, стабилизирующего ферромагнитную F-фазу, сверхобменного взаимодействия Ni²⁺–O^{2–}– и Ni^{2+} . стабилизирующего антиферромагнитную фазу G-типа. Учет антисимметричного обмена Дзялошинского-Мория позволяет объяснить наблюдаемые в ортоникелатах эффекты слабого ферромагнетизма и киральности. Анализ спиновой структуры электронно-дырочных центров в манганитах RMnO₃ указывает на ферромагнитный металлический характер диспропорционированной фазы в LaMnO3 и тенденцию к формированию спиральных структур в CD-фазе более «тяжелых» манганитов. Результаты работы могут быть использованы для анализа спиновых взаимодействий в других перовскитных JT-магнетиках, в частности ферратах типа (Ca,Sr)FeO₃ и рутенатах типа $SrRuO_4$, Sr_2RuO_4 и $Sr_3Ru_2O_7$.

Благодарности. Автор выражает благодарность Ю. Д. Панову за плодотворные дискуссии.

Финансирование. Работа выполнена при поддержке Министерства образования и науки Российской федерации (проект FEUZ-2023-0017).

ЛИТЕРАТУРА

- К. И. Кугель, Д. И. Хомский, Эффект Яна-Теллера и магнетизм: соединения переходных металлов, УФН 136, 621 (1982) [К. І. Киgel, D. І. Khomskii, The Jahn-Teller Effect and Magnetism: Transition Metal Compounds, Physics-Uspekhi 25, 231 (1982)], doi:10.1070/PU1982v025n04ABEH004537.
- D. Khomskii, Transition Metal Compounds, Cambridge Univ. Press (2014).
- A. S. Moskvin, Perspectives of Disproportionation Driven Superconductivity in Strongly Correlated 3d Compounds, J. Phys.: Condens. Matter 25, 085601 (2013), doi:10.1088/0953-8984/25/8/085601.
- A. Moskvin, Jahn Teller Magnets, Magnetochemistry y, 224 (2023), doi:10.3390/magnetochemistry9110224.
- 5. H. Sun, M. Huo, X. Hu et al., Signatures of Superconductivity Near 80 K in a Nickelate Under High Pressure, Nature 621, 493 (2023), doi:10.1038/s41586-023-06408-7.
- Jun Hou, Peng-Tao Yang, Zi-Yi Liu et al., Emergence of High-Temperature Superconducting Phase in La₃Ni₂O₇ Crystals, Chin. Phys. Lett. 40, 117302 (2023), doi:10.1088/0256-307X/40/11/117302.
- Y. Zhang, D. Su, Y. Huang et al., High-Temperature Superconductivity with Zero Resistance and Strange-Metal Behaviour in La₃Ni₂O_{7-Δ}, Nat. Phys. 20, 1269 (2024), doi:10.1038/s41567-024-02515-y.
- H. Katayama-Yoshida, K. Kusakabe, H. Kizaki, and A. Nakanishi, General Rule and Materials Design of Negative Effective U System for High-T_c Superconductivity, Appl. Phys. Express 1, 081703 (2008), doi:10.1143/APEX.1.081703.
- 9. A. S. Moskvin, Pseudo-Jahn Teller Centers and Phase Separation in the Strongly Correlated Oxides With Nonisovalent Substitution: Cuprates and Manganites, Physica B 252, 186 (1998).
- A. S. Moskvin, Charge States of Strongly Correlated 3d Oxides: From Typical Insulator to Unconventional Electron-Hole Bose Liquid, Low Temp. Phys. 33, 234 (2007).
- I. I. Mazin, D. I. Khomskii, R. Lengsdor et al., *Charge Ordering as Alternative to Jahn-Teller Distortion*, Phys. Rev. Lett. **98**, 176406 (2007), doi:10.1103/PhysRevLett.98.176406.
- **12.** A. S. Moskvin, Disproportionation and Electronic Phase Separation in Parent Manganite

 $LaMnO_3$, Phys. Rev. B **79**, 115102 (2009), doi:10.1103/PhysRevB.79.115102.

- A. S. Moskvin, True Charge Transfer Gap in Parent Insulating Cuprates, Phys. Rev. B 84, 075116 (2011).
- 14. R. J. Green, M. W. Haverkort, and G. A. Sawatzky, Bond Disproportionation and Dynamical Charge Fluctuations in the Perovskite Rare-Earth Nickelates, Phys. Rev. B 94, 195127 (2016).
- A. С. Москвин, Приближают ли нас методы DFT, L(S)DA, LDA+U, LDA+DMFT... к правильному описанию оптического отклика для сильнокоррелированных систем? Опт. и спектр.
 121, 515 (2016) [A. S. Moskvin, DFT, L(S)DA, LDA+U, LDA+DMFT, Whether We Do Approach to a Proper Description of Optical Response for Strongly Correlated Systems? Opt. and Spectrosc. 121, 467 (2016)], doi:10.1134/S0030400X16100167.
- 16. O. I. Malyi and A. Zunger, False Metals, Real Insulators, and Degenerate Gapped Metals, Appl. Phys. Rev. 7, 041310 (2020), doi:10.1063/5.0015322.
- M. Takano, N. Nakanishi, Y. Takeda, S. Naka, and T. Takada, *Charge Disproportionation in CaFeO₃ Studied With the Mössbauer Effect*, Materials Res. Bull. **12**, 923 (1977), doi:10.1016/0025-5408(77)90104-0.
- 18. A. Subedi, O. E. Peil, and A. Georges, Low-Energy Description of the Metal-Insulator Transition in the Rare-Earth Nickelates, Phys. Rev. B 91, 075128 (2015).
- 19. E. Dagotto, T. Hotta, and A. Moreo, Colossal Magnetoresistant Materials: The Key Role of Phase Separation, Phys. Rep. 344, 1 (2001), doi:10.1016/S0370-1573(00)00121-6.
- T. M. Rice and L. Sneddon, Real-Space and K-Space Electron Pairing in BaPb_{1-x}Bi_xO₃, Phys. Rev. Lett. 47, 689 (1981).
- A. Moskvin and Y. Panov, Effective-Field Theory for Model High-T_c Cuprates, Condens. Matter 6, 24 (2021), doi:10.3390/condmat6030024.
- 22. A. S. Moskvin and Yu. D. Panov, Model of Charge Triplets for High-T_c Cuprates, J. Magn. Magn. Mater. 550, 169004 (2022), doi:10.1016/j.jmmm.2021.169004.
- 23. C. Zener, Interaction between the d-Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure, Phys. Rev. 82, 403 (1951).
- 24. P. W. Anderson and H. Hasegawa, Considerations on Double Exchange, Phys. Rev. 100, 675 (1955), doi:10.1103/physrev.100.675.

- 25. P. G. de Gennes, Effects of Double Exchange in Magnetic Crystals, Phys. Rev. 118, 141 (1960).
- 26. E. Müller-Hartmann and E. Dagotto, *Electronic Hamiltonian for Transition-Metal Oxide Compounds*, Phys. Rev. B 54, R6819 (1996).
- 27. A. Moskvin, Structure-Property Relationships for Weak Ferromagnetic Perovskites, Magnetochemistry 7, 111 (2021), doi:10.3390/magnetochemistry7080111.
- 28. А. С. Москвин, Взаимодействие Дзялошинского и обменно-релятивистские эффекты в ортоферритах, ЖЭТФ 159, 607 (2021) [A. S. Moskvin, Dzyaloshinskii Interaction and Exchange-Relativistic Effects in Orthoferrites, JETP 132, 517 (2021)], doi:10.1134/S1063776121040245.
- 29. M. L. Medarde, Structural, Magnetic and Electronic Properties of RNiO₃ Perovskites (R = Rare Earth), J. Phys.: Condens. Matter 9, 1679 (1997).
- 30. Y. M. Klein, M. Kozlowski, A. Linden et al., ReNiO₃ Single Crystals (Re = Nd, Sm, Gd, Dy, Y, Ho, Er, Lu) Grown From Molten Salts Under 2000 Bar of Oxygen Gas Pressure, Crystal Growth Des. 21, 4230 (2021), doi:10.1021/acs.cgd.1c00474.
- 31. M. Hepting, The Rare-Earth Nickelates, in Ordering Phenomena in Rare-Earth Nickelate Heterostructures, Springer Theses, Springer, Cham (2017), doi:10.1007/978-3-319-60531-9-2.
- 32. G. Giovannetti, S. Kumar, D. Khomskii, S. Picozzi, and J. van den Brink, *Multiferroicity in Rare-Earth Nickelates RNiO*₃, Phys. Rev. Lett. **103**, 156401 (2009).
- 33. D. Kumar, K. P. Rajeev, J. A. Alonso, and M. J. Martinez-Lope, Spin-Canted Magnetism and Decoupling of Charge and Spin Ordering in NdNiO₃, Phys. Rev. B 88, 014410 (2013).
- 34. M. Hepting, R. J. Green, Z. Zhong et al., Complex Magnetic Order in Nickelate Slabs, Nat. Phys. 14, 1097 (2018), doi:10.1038/s41567-018-0218-5.
- 35. J. Li, R. J. Green, C. Dominguez et al., Signatures of Polarized Chiral Spin Disproportionation in Rare Earth Nickelates, Nat. Commun. 15, 7427 (2024), doi:10.1038/s41467-024-51576-3.
- 36. N. Ortiz Hernandez, E. Skoropata, H. Ueda et al., Magnetoelectric Effect in Multiferroic Nickelate Perovskite YNiO₃, Commun. Mater. 5, 154 (2024), doi:10.1038/s43246-024-00604-2.
- 37. E. Bousquet and A. Cano, Non-Collinear Magnetism and Multiferroicity: The Perovskite Case, Phys. Sci. Rev. 8, 479 (2023), doi:10.1515/psr-2019-0071.

- 38. J. L. Garcia-Muñoz, J. Rodriguez-Carvajal, and P. Lacorre, Neutron-Diffraction Study of the Magnetic-Ordering in the Insulating Regime of the Perovskites RNiO₃ (R=Pr and Nd), Phys. Rev. B 50, 978 (1994), doi:10.1103/PhysRevB.50.978.
- 39. J. Rodriguez-Carvajal, S. Rosenkranz, M. Medarde et al., Neutron-Diffraction Study of the Magnetic and Orbital Ordering in ¹⁵⁴ SmNiO₃ and ¹⁵³ EuNiO₃, Phys. Rev. B 57, 456 (1998).
- 40. M. T. Fernandez-Diaz, J. A. Alonso, M. J. Martinez-Lope et al., *Magnetic Structure of the HoNiO₃ Perovskite*, Phys. Rev. B 64, 144417 (2001), doi:10.1103/PhysRevB.64.144417.
- Д. А. Варшалович, А. Н. Москалев, В. К. Херсонский, Квантовая теория углового момента, Издво Наука, Ленинград (1975); D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii, Quantum Theory of Angular Momentum, World Scientific, Singapore (1988).
- 42. Q. Huang, A. Santoro, J. W. Lynn et al., Structure and Magnetic Order in Undoped Lanthanum Manganite, Phys. Rev. B 55, 14987 (1997), doi:10.1103/PhysRevB.55.14987.
- 43. J.-S. Zhou and J. B. Goodenough, Paramagnetic Phase in Single-Crystal LaMnO₃, Phys. Rev. B 60, R15002 (1999), doi:10.1103/PhysRevB.60.R15002.
- 44. R. Raffaelle, H. U. Anderson, D. M. Sparlin, and P. E. Parris, *Transport Anomalies in the High-Temperature Hopping Conductivity and Thermopower of Sr-Doped La(Cr,Mn)O*₃, Phys. Rev. B 43, 7991 (1991), doi:10.1103/PhysRevB.43.7991.
- 45. J. A. M. Van Roosmalen and E. H. P. Cordfunke, The Defect Chemistry of LaMnO_{3+δ}: 4. Defect Model for LaMnO_{3+δ}, J. Sol. St. Chem. **110**, 109 (1994), doi:10.1006/JSSC.1994.1143.
- 46. Y. Murakami, J. P. Hill, D. Gibbs et al., Resonant X-Ray Scattering From Orbital Ordering in LaMnO₃, Phys. Rev. Lett. 81, 582 (1998).
- 47. M. v. Zimmermann, C. S. Nelson, Y.-J. Kim et al., Resonant X-Ray-Scattering Study of Octahedral Tilt Ordering in LaMnO₃ and Pr_{1-x} Ca_xMnO₃, Phys. Rev. B 64, 064411 (2001).
- 48. Kim Yong-Jihn, P-Wave Pairing and Colossal Magnetoresistance in Manganese Oxides, Mod. Phys. Lett. B 12, 507 (1998), doi:10.1142/S0217984998000615.

- 49. V. N. Krivoruchko, Local Spin-Triplet Superconductivity in Half-Metallic Manganites: A Perspective Platform for High-Temperature Topological Superconductivity, Low Temp. Phys. 47, 901 (2021), doi:10.1063/10.0006560.
- 50. V. Markovich, I. Fita, A. Wisniewski et al., Metastable Diamagnetic Response of 20 nm $La_{1-x}MnO_3$ Particles, Phys. Rev. B 77, 014423 (2008), doi:10.1103/PhysRevB.77.014423.
- 51. M. Kasai, T. Ohno, Y. Kauke et al., Current-Voltage Characteristics of YBa₂Cu₃O_y/ La_{0.7}Ca_{0.3}MnO_z/YBa₂Cu₃O_y Trilayered Type Junctions, Jpn. J. Appl. Phys. 29, L2219 (1990), doi 10.1143/JJAP.29.L2219.
- 52. А. В. Митин, Г. М. Кузьмичева, С. И. Новикова, Сложные оксиды на основе марганца со структурой перовскита и производной от нее, Ж. неорг. химии 42, 1953 (1997) [А. V. Mitin, G. M. Kuz'micheva, and S. I. Novikova, Mixed Oxides of Manganese with Perovskite and Perovskite-related Structures, Russian J. Inorg. Chem. 42, 1791 (1997)], doi:10.1002/CHIN.199814029.
- 53. R. Nath, A. K. Raychaudhuri, Ya. M. Mukovskii et al., *Electric Field Driven Destabilization of* the Insulating State in Nominally Pure LaMnO₃, J. Phys.: Condens. Matter 25, 155605 (2013), doi:10.1088/0953-8984/25/15/155605.
- 54. R. Cabassi, F. Bolzoni, E. Gilioli et al., Jahn Teller-Induced Crossover of the Paramagnetic Response in the Singly Valent E_g System LaMn₇O₁₂, Phys. Rev. B 81, 214412 (2010), doi:10.1103/PhysRevB.81.214412.

- 55. S. Schaile, H.-A. Krug von Nidda, J. Deisenhofer et al., Korringa-Like Relaxation in the High-Temperature Phase of A-Site Ordered YBaMn₂O₆, Phys. Rev. B 85, 205121 (2012), doi:10.1103/PhysRevB.85.205121.
- 56. T. Hotta and E. Dagotto, Theory of Manganites, in Colossal Magnetoresistive Manganites, ed. by T. Chatterji, Springer, Dordrecht (2004), doi:10.1007/978-94-015-1244-2-5.
- 57. А. М. Кадомцева, А. С. Москвин, И. Г. Бострем, Б. М. Ванклин, Н. А. Хафизова, Природа аномальных магнитных свойств ферритов-хромитов иттрия, ЖЭТФ 72, 2286 (1977) [А. М. Kadomtseva, А. S. Moskvin, I. G. Bostrem et al., Nature of the Anomalous Magnetic Properties of Yttrium Ferrite Chromites, Sov. Phys. JETP 45, 1202 (1977)].
- 58. I. Fita, V. Markovich, A. S. Moskvin et al., Reversed Exchange-Bias Effect Associated With Magnetization Reversal in the Weak Ferrimagnet LuFe_{0.5} Cr_{0.5} O₃, Phys. Rev. B 97, 104416 (2018).
- **59**. Е. В. Васинович, А. С. Москвин, Слабые ферримагнетики типа $YFe_{1-x}Cr_xO_3$: отрицательная намагниченность и спиновая переориентация, ФТТ **66**, 888 (2024) [Е. V. Vasinovich and A. S. Moskvin, Weak Ferrimagnets of the $YFe_{1-x}Cr_xO_3$ Type: Negative Magnetization and Spin Reorientation, Phys. Solid State **66**, 858 (2024)], doi: 10.61011/PSS.2024.06.58699.17HH.
- 60. A. S. Moskvin, N. S. Ovanesyan, and V. A. Trukhtanov, Angular Dependence of the Superexchange Interaction Fe³⁺-O²⁻-Cr³⁺, Hyperfine Interactions 1, 265 (1975), doi:10.1007/BF01022459.