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This study examines electron transport in astrophysical plasmas mediated by Coulomb collisions and collision-

less wave-particle interactions, using a kinetic transport model that incorporates spectral evolutions through

these interactions. It investigates the transport of suprathermal electrons via whistler turbulence and the effects

of plasma magnetization. Key findings indicate that in strongly magnetized plasmas, diffusion timescales in

pitch angle space become saturated at large pitch angles, independent of increasing magnetic field strength.

Conversely, in weakly magnetized plasmas, these timescales decrease with decreasing magnetic field strength,

enhancing electron transport in velocity space. The study also identifies minimum conditions for resonant scat-

tering, dominated by wave-particle interactions over Coulomb collisions, which depend on Coulomb collision

effects and the power-law slope of the whistler turbulence spectrum. These findings have applications in weakly

magnetized astrophysical plasmas, from the relatively strong magnetic fields of the interplanetary medium to

the very weak magnetic fields of the intracluster medium.
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1. INTRODUCTION

Plasma physics is essential for understanding var-
ious astrophysical and laboratory phenomena, where
electron transport significantly influences the behavior
and evolution of plasma systems. In the field of fusion
plasma, plasma heating and current drive have been
primarily examined to maintain the conditions neces-
sary for the magnetic confinement of plasmas [1]. It has
been demonstrated that the propagation and damping
of radiofrequency waves, including ion cyclotron, elec-
tron cyclotron, and lower-hybrid waves, produce ener-
getic ions and electrons through Landau and cyclotron
damping, which leads to current drive generation in the
plasma system. Along with such collisionless damp-
ing, the collisional relaxation of energetic particles is
involved in the evolution of particle distribution in the
plasma system. Likewise, collisionless wave-particle in-
teractions and collisional relaxation also play a crucial
role in particle transport in astrophysical plasmas. In-
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deed, turbulence and the associated plasma instabili-
ties are ubiquitous in astrophysical plasmas, and un-
derstanding energy transport through such turbulence
is a long-standing problem [2–5].

Plasma phenomena and their dynamical evolution
in space and astrophysical plasmas depend on the mag-
netization, defined as follows:

ωpe

Ωe
=

√
4πn0e2/me

eB0/mec
∝
√
n0

B0
, (1)

where

ωpe =
√
4πn0e2/me, Ωe = eB0/mec

stand for the plasma frequency and electron gyrofre-
quency, respectively, and these quantities depend on
the plasma density n0 and magnetic field B0. Thus, the
phenomena associated with plasma physics have been
examined across a wide range of magnetization fac-
tors [6–11]. For instance, the characteristics of plasma
instabilities in space plasma depend on the properties
of the medium, such as strongly magnetized plasma in
the solar atmosphere near the Sun (ωpe/Ωe < 1) and
weakly magnetized plasmas in the solar wind propa-
gating toward Earth (ωpe/Ωe > 1) [6, 7]. Additionally,
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a wide range of ωpe/Ωe can be adopted to model the
pulsar wind propagation from the strongly magnetized
magnetosphere of a pulsar to the weakly magnetized
pulsar wind nebulae propagating toward the interstel-
lar medium [8, 9]. Furthermore, rigorous theories have
been proposed for kinetic turbulence and their roles in
particle heating through energy transfer in ambient as-
trophysical environments, including weakly magnetized
media such as interplanetary, interstellar, and intra-
cluster media (ωpe/Ωe � 1) [10, 11].

Understanding turbulence and dynamical evolution
in various astrophysical media is crucial for compre-
hending particle transport across strongly magnetized
to weakly magnetized plasmas, which is essential to
examine the nature of plasma distribution in various
space and astrophysical plasmas. The mechanisms be-
hind particle transport in space weather have been par-
ticularly examined so far. Indeed, suprathermal elec-
trons have been observed by the Parker Solar Probe
in the interplanetary medium; these electrons are ex-
pected to originate in the solar corona and escape into
the interplanetary medium along open magnetic field
lines [12, 13]. While particle transport in plasmas
has primarily been attributed to Coulomb collisions,
observational evidence of suprathermal electrons high-
lights the importance of collisionless wave-particle in-
teractions. In this regard, recent theoretical studies
have proposed a kinetic model based on the Fokker-
Planck equation, including wave-particle interactions
mediated by plasma turbulence [14–23]. For instance,
Kim et al. [14] highlighted that the persistence of a
non-Maxwellian distribution in the solar wind could
be exhibited through wave-particle interactions due to
Langmuir turbulence in the absence of Coulomb col-
lisions (see also [15]). Tang et al. [16] incorporated
Coulomb collisional effects along with wave-particle
interaction terms into the kinetic model and showed
that Coulomb collisions predominantly transport core
electrons following a Maxwellian distribution, whereas
suprathermal electrons are preferentially accelerated
through whistler turbulence. Simulation studies using
the particle-in-cell (PIC) method have also shown the
formation of suprathermal electrons through whistler
turbulence [24, 25]. These findings are consistent with
observational evidence of suprathermal electrons in in-
terplanetary space [12, 13].

Despite the considerable progress mentioned above,
several gaps persist in our understanding, particularly
regarding how these mechanisms operate under dif-
ferent plasma magnetization conditions. Notably, the
plasma parameters, including magnetization, differ be-
tween interplanetary space and other astrophysical me-

dia such as interstellar and intracluster media. Conse-
quently, plasma phenomena related to particle trans-
port could also differ. While simulation studies using
kinetic plasma simulations have demonstrated possible
acceleration mechanisms through collisionless shocks
and turbulence in various astrophysical media [26–31],
it is essential to understand the transport of such ac-
celerated particles in these media to demonstrate the
persistence of non-Maxwellian distributions.

In this context, this work aims to improve our un-
derstanding of particle transport theory based on the
kinetic transport equation and whistler turbulence un-
der different plasma magnetization conditions relevant
to various astrophysical media. To achieve this, we
adopt a kinetic transport model that incorporates the
spectral evolution influenced by both Coulomb colli-
sions and wave-particle interactions, as proposed in pre-
vious works [16–19]. By examining how suprathermal
electrons are transported through whistler turbulence
under varying degrees of plasma magnetization, we ex-
tend the applicability of the kinetic transport model to
various astrophysical environments. This work reveals
distinct behaviors in diffusion timescales for weakly and
strongly magnetized plasmas, with significant implica-
tions for electron transport dynamics. Additionally,
we identify minimum conditions for resonant scattering
dominated by wave-particle interactions over Coulomb
collisions, highlighting dependencies on Coulomb col-
lision effects and the power-law slope of the whistler
turbulence spectrum. This comprehensive approach al-
lows us to explore diffusion timescales in both veloc-
ity and pitch angle space, providing new insights into
the underlying processes governing electron transport
in plasmas.

2. DESCRIPTION OF THE KINETIC MODEL

The evolution of the electron velocity distribution
function in astrophysical environments has been exam-
ined using the kinetic transport equation [16–19]. The
electromagnetic interaction in a typical astrophysical
environment includes the electric force and the Lorentz
force, which are described as follows:

a = − eE

me
− e

me
(v ×B) = ar(r) + aL. (2)

Here, e and me are the electric charge and the mass of
electrons, and E and B denote the electric and mag-
netic fields, respectively. ar(r) is the radial component
of the acceleration due to the electric force, whereas aL
is the non-radial component due to the Lorentz force.
Using the acceleration a due to the external forces along
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with the terms responsible for Coulomb collisions and
wave-particle interactions of kinetic turbulence, the ki-
netic transport equation can be described as follows:

∂f(r,v, t)

∂t
+ (v · ∇r)f(r,v, t) + (a · ∇v)f(r,v, t) =

=

(
δf

δt

)
cc

+

(
δf

δt

)
wp

. (3)

Here, the electron velocity distribution function is ex-
pressed in the position (r), velocity (v) and time (t)
domains, and (δf/δt)cc and (δf/δt)wp include the ef-
fects of Coulomb collisions and kinetic turbulence, re-
spectively. In the coordinates of the radial distance r,
the velocity v, and the parameter including the pitch
angle θ between the velocity and magnetic field vectors
(μ ≡ cos θ), Equation (3) becomes

∂f

∂t
+ vμ

∂f

∂r
+ ar(r)

(
μ
∂f

∂v
+

(1− μ2)

v

∂f

∂μ

)
+

+
v

r
(1 − μ2)

∂f

∂μ
=

(
δf

δt

)
cc

+

(
δf

δt

)
wp

. (4)

The Coulomb collisions with Maxwellian back-
grounds of electrons and protons have been employed
in the solar wind environments [16]. The term associ-
ated with the Coulomb collisions [32] can be expressed
as:(

δf

δt

)
cc

= cv,e

{[
erf
(

v

vth,e

)
−G

(
v

vth,e

)]
×

× 1

2v3
∂

∂μ

[
(1− μ2)

∂f

∂μ

]
+

+
1

v2
∂

∂v

[
G

(
v

vth,e

)
v
∂f

∂v

]
+

+
1

v2
∂

∂v

[
2v2

v2th,e
G

(
v

vth,e

)
f

]}
+

+ cv,p

{[
erf
(

v

vth,p

)
−G

(
v

vth,p

)]
×

× 1

2v3
∂

∂μ

[
(1− μ2)

∂f

∂μ

]
+

+
1

v2
∂

∂v

[
G

(
v

vth,p

)
v
∂f

∂v

]
+

+
1

v2
∂

∂v

[
2v2

v2th,p

me

mp
G

(
v

vth,e

)
f

]}
, (5)

where mp/me is the proton-to-electron mass ratio and
vth,e and vth,p are the thermal velocities of the back-
ground Maxwellian electrons and protons. erf(x) and
G(x) are the error function and the Chandrasekhar

function, respectively. The collision frequencies cor-
responding to the collisions with the Maxwellian back-
ground electrons (cv,e) and protons (cv,p) are given by:

cv,e =
4πn0e

4 ln Λ

m2
e

, (6)

cv,p =
4πn0e

4 ln Λ

m2
p

, (7)

where n0 and ln Λ are the plasma density and the
Coulomb logarithm.

To model the terms for wave-particle interaction,
we consider the resonant scattering of electrons by
right-handed polarized whistler waves as a main wave-
particle interaction mechanism in the turbulent plasma
system. Considering the cyclotron resonance of elec-
trons with waves propagating parallel to the guiding
magnetic field B0, the resonant particles satisfy the
following condition:

ωr(k) = vμk‖ + nΩe, (8)

where ωr and k are the oscillatory wave frequency and
the wavenumber, respectively, and Ωe = |e|B0/mec is
the electron gyrofrequency. The integer n 	= 0 must
be finite for cyclotron resonance through the parallel
waves. In the whistler regime (ωr < Ωe), the magnetic
power spectrum [18, 22] can be described as follows:

PB(k) = A
c

Ωe

∣∣∣∣ kcΩe

∣∣∣∣−s

, (9)

where A is the normalization constant, and the spectral
index s is expected not to exceed 2 [22]. The evolu-
tion of the electron distribution function due to wave-
particle interaction through whistler turbulence [16–19]
can be expressed as(

δf

δt

)
wp

=
∂

∂μ

(
Dμμ

∂f

∂μ
+

1

me
Dμv

∂f

∂v

)
+

+
1

v2
∂

∂v

(
v2
(

1

me
Dμv

∂f

∂μ
+

1

m2
e

Dvv
∂f

∂v

))
. (10)

The diffusion tensor for nonrelativistic electrons is ex-
pressed as:

D̄vv ≡
Dvv

Ωe(mec)2
=

π

3

A

a

(
β|μ|
a

) s−1

3

(1 − μ2), (11)

D̄μv ≡
Dμv

Ωe(mec)
=

Dvμ

Ωe(mec)
=

= −π

3

A

a

[
μ

|μ|

(
β|μ|
a

) s−2

3

+
μ

β

(
β|μ|
a

) s−1

3

]
(1−μ2),

(12)

131



Ji-Hoon Ha ЖЭТФ, том 167, вып. 1, 2025

D̄μμ ≡
Dμμ

Ωe
=

π

3

A

a
×

×
[(

β|μ|
a

) s−3

3

+ 2
μ

|μ|
μ

β

(
β|μ|
a

) s−2

3

+

+

(
μ

β

)2(
β|μ|
a

) s−1

3

]
(1− μ2). (13)

Here, we used dimensionless parameters, β = v/c

and a = ω2
pe/Ω

2
e with the plasma frequency

ωpe =
√

4πn0e2/me. To consider both weakly
magnetized plasmas such as interplanetary, interstel-
lar, and intracluster media (a � 1) and strongly
magnetized plasmas near the stellar magnetosphere
(a < 1), we examine the properties of wave-particle
interactions mediated by whistler turbulence over a
wide range of parameter a.

In the kinetic model described by Equation (4), the
detailed evolution mediated by Coulomb collisions and
wave-particle interactions depends on the initial elec-
tron distribution. The electron distribution of thermal
plasma is typically modeled as Maxwellian, given by:

fth,e(v) =
n0

π3/2v3th,e
exp

[
−
(

v

vth,e

)2
]
. (14)

While the Maxwellian distribution is suitable for de-
scribing the medium in the absence of nonlinear
processes such as plasma and magnetohydrodynamic
(MHD) waves, shocks, and turbulence, it has been
demonstrated that plasma processes associated with
such phenomena can accelerate particles. This particle
energization results in a distribution that deviates from
Maxwellian, known as the kappa distribution [33–35].
The electron kappa distribution is defined as:

fκ,e(v) =
n0

π3/2v3th,e

Γ(κ+ 1)

(κ− 3/2)3/2Γ(κ− 1/2)
×

×
[
1 +

1

(κ− 3/2)

(
v

vth,e

)2
]−(κ+1)

, (15)

where Γ(x) is the Gamma function and the parameter
κ determines the slope of the suprathermal distribu-
tion. For v � vth,e, the kappa distribution follows a
power-law form,

fκ,e(v) ∝ v−2(κ+1).

A smaller value of κ results in a flatter particle distri-
bution, whereas a larger value of κ makes the kappa
distribution closer to Maxwellian. In the subsequent
section, we explore how the initial slope of the elec-
tron distribution function influences electron transport

through whistler turbulence, taking into account the
dependence on magnetization.

It is noteworthy that the nature of plasma turbu-
lence and wave-particle interaction mediated by such
turbulence could be substantially different from the in-
terpretation obtained through linear theory [36, 37].
Specifically, the effects of nonlinear processes on en-
ergy dissipation by whistler waves have been examined
through PIC simulations [38, 39]. According to the re-
sults of these numerical simulations, the significance of
nonlinear damping of whistler waves depends on the
fluctuation energy of the turbulence and the magneti-
zation of the plasma system [38]. In weakly magne-
tized plasma, linear damping dominates over nonlinear
damping, indicating that the theory developed in the
linear regime could be applicable for examining wave-
particle interaction through whistler turbulence. In
strongly magnetized plasma, when the turbulent fluc-
tuation (δB) is sufficiently weak (i.e., δB ≤ B0), linear
theory could be applicable. In this regard, the kinetic
model in this work could be suitable for weak turbu-
lence systems in space and astrophysical environments.
For systems with strong turbulence (δB ≥ B0), non-
linear processes should be taken into account in the
model, which is beyond the scope of this paper.

3. ELECTRON TRANSPORT THROUGH
WAVE-PARTICLE INTERACTION AND ITS
DEPENDENCE ON THE MAGNETIZATION OF

THE PLASMA SYSTEM

Firstly, we examine the acceleration timescales
through whistler turbulence and their dependence on
the magnetic field strength using the three diffusion co-
efficients. The acceleration timescales can be derived
as follows:

τvv

Ω−1
e

≡ γ2
em

2
ev

2

Ω−1
e Dvv

=
3a

Aπ
β2

(
β|μ|
a

) 1−s
3

(1 − μ2)−1,

(16)

τμv

Ω−1
e

≡
∣∣∣∣ γemev

Ω−1
e Dμv

∣∣∣∣ =
=

3a

Aπ
β

∣∣∣∣∣ μ|μ|
(
β|μ|
a

) s−2

3

+
μ

β

(
β|μ|
a

) s−1

3

∣∣∣∣∣
−1

×

× (1 − μ2)−1, (17)
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Fig. 1. Comparison of τμv/τvv (upper panels) and τμμ/τvv (lower panels) across parameter space. The plots depict variations

with respect to electron velocity β ranging from 10−3 to 10−1, and magnetization parameter a spanning from 10−4 to 104.

Larger values of a indicate weakly magnetized plasmas, whereas smaller values denote strongly magnetized plasma

τμμ

Ω−1
e

≡
∣∣∣∣ 1

Ω−1
e Dμμ

∣∣∣∣ =
=

3a

Aπ

∣∣∣∣∣
(
β|μ|
a

) s−3

3

+
2μ

|μ|
μ

β

(
β|μ|
a

) s−2

3

+

+

(
μ

β

)2(
β|μ|
a

) s−1

3

∣∣∣∣∣
−1

(1 − μ2)−1, (18)

where γe is the Lorentz factor, which is approximately
1 for nonrelativistic particles. To assess the relative im-
portance of pitch angle scattering, the following ratios
were calculated:

τμv
τvv

=

∣∣∣∣∣βμ|μ|
(
β|μ|
a

)− 1
3

+ μ

∣∣∣∣∣
−1

, (19)

τμμ
τvv

=

∣∣∣∣∣β2

(
β|μ|
a

)− 2
3

+
2βμ2

|μ|

(
β|μ|
a

)− 1
3

+ μ2

∣∣∣∣∣
−1

.

(20)
In a strongly magnetized plasma (a → 0), the ratios
simplify to:

τμv
τvv

→ |μ|−1
,
τμμ
τvv

→ |μ|−2
, (21)

indicating that the relative importance of diffusion in
pitch angle space is independent of the particle velocity

β and magnetic field strength parametrized by a once
the particles satisfy the resonant condition. Given that
the pitch angle parameter satisfies |μ| < 1, the follow-
ing relations hold true in strongly magnetized plasmas:

τvv < τμv < τμμ. (22)

In weakly magnetized plasmas (a � 1), however, the
ratios of these characteristic timescales may vary de-
pending on the particle velocity β and magnetic field
strength a.

Fig. 1 shows τμv/τvv and τμμ/τvv as functions of
electron velocity β and magnetization a. A few points
were noted: (1) In weakly magnetized plasmas (a� 1),
diffusion processes in the pitch angle space become
prominent, whereas a saturated behavior is observed
for particle acceleration in sufficiently strong magnetic
fields (a 
 1). (2) The dependence on magnetic field
strength is more pronounced for accelerating electrons
with higher β. Particularly, panels (a) and (d) show
that τμv/τvv and τμμ/τvv exhibit similar asymptotic
behaviors for small β and large pitch angles |μ| > 0.5,
irrespective of a. Conversely, panels (b), (c), (e), and
(f) illustrate that the effects of magnetic field strength
on pitch angle scattering are more significant for elec-
trons with larger β. (3) In strongly magnetized plasmas
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(a < 1), τμv and τμμ increase as the pitch angle |μ| de-
creases, whereas the opposite behavior is observed in
weakly magnetized plasmas (a > 1). This indicates
that wave-particle interactions are influenced by the
magnetic field strength of the background medium.

Next, we examine the conditions under which
the acceleration timescales are dominated by wave-
particle interactions over Coulomb collisions. Assum-
ing fixed background temperatures (constant vth,e and
vth,p), these regimes depend on the magnetic field
strength and the initial distribution of suprathermal
electrons. Considering the diagonal terms in (δf/δt)cc
and (δf/δt)wp for velocity space diffusion, we have the
following expressions:(

δf

δt

)
cc

≈ cv,e

{
1

v2
∂

∂v

[
G

(
v

vth,e

)
v
∂f

∂v

]
+

+
1

v2
∂

∂v

[
2v2

v2th,e
G

(
v

vth,e

)
f

]}
+

+ cv,p

{
1

v2
∂

∂v

[
G

(
v

vth,p

)
v
∂f

∂v

]
+

+
1

v2
∂

∂v

[
2v2

v2th,p

me

mp
G

(
v

vth,e

)
f

]}
, (23)

(
δf

δt

)
wp

≈ 1

v2
∂

∂v

[
v2
(

1

m2
e

Dvv
∂f

∂v

)]
=

=
1

v2

[
2v

m2
e

Dvv
∂f

∂v
+

∂Dvv

∂v

v2

m2
e

∂f

∂v
+

+
v2

m2
e

Dvv
∂2f

∂v2

]
. (24)

For v � vth,e, the Chandrasekhar function can be
approximated as G(v/vth,e) ≈ (v/vth,e)

−2/2 and Equa-
tion (23) simplifies to:

(
δf

δt

)
cc

≈ cv,e

{
1

v2
∂f

∂v
+

+
1

2

(vth,e

v

)2 [
− 1

v2
∂f

∂v
+

1

v

∂2f

∂v2

]}
+

+ cv,p

{
1

v2
me

mp

∂f

∂v
+

+
1

2

(vth,p

v

)2 [
− 1

v2
∂f

∂v
+

1

v

∂2f

∂v2

]}
. (25)

Assuming the suprathermal electrons follow a kappa
distribution function, the distribution of high-energy

Fig. 2. a — Maximum acceleration timescale, τvv,max, plotted

against β for four different q values. b — τvv,max shown for

three different β values across various q values. The electron

thermal velocity is set as vth,e/c = 10−3. Gray lines indicate

τvv,max/c
−1
v,e = 1

electrons with v � vth,e approximates to a power-law
tail, f ∝ v−q. The derivatives of f are expressed as
follows:

∂f

∂v
= −qv−1f, (26)

∂2f

∂v2
= q(q + 1)v−2f. (27)

Using Equations (26) and (27), Equations (24) and
(25) can be rewritten as(

δf

δt

)
cc

≈ cv,e

{
−qf

v3
+

1

2

(vth,e

v

)2 [q(q + 2)f

v3

]}
+

+ cv,p

{
−me

mp

qf

v3
+

1

2

(vth,p

v

)2 [q(q + 2)f

v3

]}
, (28)

(
δf

δt

)
wp

≈ 1

v2

[
q(q − 1)Dvv

m2
e

f−

− qvDvv(s− 1)β(s−4)/3

3m2
ec

f

]
. (29)
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Fig. 3. τμv,max and τμμ,max for weakly (left panels) and strongly (right panels) magnetized plasmas. Here, the electron thermal

velocity is assumed as vth,e/c = 10−3, and the gray lines display the value τmax/c
−1
v,e = 1

Electrons gain energy when

(δf/δt)cc + (δf/δt)wp ≥ 0.

In this case, we obtain the following inequality for Dvv:

Dvv ≥
[
q(q − 1)

m2
ev

2
− q(s− 1)β(s−4)/3

3m2
evc

]−1

×

×
{
cv,e

[
q

v3
− 1

2

(vth,e

v

)2(q(q + 2)

v3

)]
+

+ cv,p

[
me

mp

q

v3
− 1

2

(vth,p

v

)2(q(q + 2)

v3

)]}
. (30)

Using the inequality (30), we examine how the slope of
the initial distribution of suprathermal electrons could
influence the relative importance between Coulomb col-
lisions and wave-particle interactions. For nonrelativis-
tic electrons where vth,e/c 
 β 
 1 (or the Lorentz
factor γe ≈ 1), the acceleration timescale (τvv) satisfies

τvv ≡
γ2
em

2
eβ

2

Dvv
≤

≤ c−1
v,eβ

3(q − 1)

∣∣∣∣1− 1

2

(vth,e

v

)2
(q + 2)

∣∣∣∣−1

+

+ c−1
v,pβ

3(q − 1)

∣∣∣∣me

mp
− 1

2

(vth,p

v

)2
(q + 2)

∣∣∣∣−1

. (31)

To explore the dependence on the slope of the
suprathermal electron distribution, we estimate the
maximum acceleration timescales for the two different
regimes as follows:

τvv,max ≈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4β3(c−1

v,e +
me

mp
c−1
v,p), for q = 5,

2β3

[
c−1
v,e

(
v

vth,e

)2
+ c−1

v,p

(
v

vth,p

)2]
,

for q →∞.

(32)

Because electron velocities satisfy v/vth,e � 1 and
v/vth,p � 1, the maximum acceleration timescale is
much larger when q → ∞. This indicates the evolu-
tion of the electron distribution function with a larger
q more effectively depends on Coulomb collisions, and
such a distribution is likely to resemble a Maxwellian.
It is understandable that wave-particle interactions
with sufficiently large q are inefficient due to the ab-
sence of a sufficient number of resonant particles. In-
deed, acceleration timescales become longer regardless
of electron velocity for larger q (panel a of Fig. 2),
and these effects are more pronounced for suprather-
mal electrons with higher β.

While the analysis in this section has focused on
the diagonal terms of the diffusion tensor, it has been
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demonstrated that the off-diagonal terms, particularly
those involving diffusion in pitch angle scattering, are
significant in weakly magnetized plasmas. Using equa-
tions (19) and (20), we can roughly estimate the max-
imum values of τμv and τμμ for wave-particle interac-
tions. Applying the inequality (31) to Equations (19)
and (20), we obtain

τμv ≤
{
c−1
v,eβ

3(q − 1)

∣∣∣∣1− 1

2

(vth,e

v

)2
(q + 2)

∣∣∣∣−1

+

+ c−1
v,pβ

3(q − 1)

∣∣∣∣me

mp
− 1

2

(vth,p

v

)2
(q + 2)

∣∣∣∣−1
}
×

×
∣∣∣∣∣βμ|μ|

(
β |μ|
a

)−1/3

+ μ

∣∣∣∣∣
−1

, (33)

τμμ ≤
{
c−1
v,eβ

3(q − 1)

∣∣∣∣1− 1

2

(vth,e

v

)2
(q + 2)

∣∣∣∣−1

+

+ c−1
v,pβ

3(q − 1)

∣∣∣∣me

mp
− 1

2

(vth,p

v

)2
(q + 2)
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}
×

×
∣∣∣∣∣β2

(
β |μ|
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)−2/3

+
2βμ2

|μ|

(
β |μ|
a

)−1/3

+ μ2

∣∣∣∣∣
−1

.

(34)

Figure 3 shows the behavior of the two characteristic
timescales τμv and τμμ across a wide range of slope
parameters q and electron velocities β. In weakly mag-
netized plasmas (a = 104), shown in the left panels
of Fig. 3, wave-particle interactions can effectively
transport electrons with softer distribution slopes due
to enhanced diffusion in pitch angle space. This en-
hancement occurs even in scenarios where τvv > c−1

v,e,
as τμμ < τμv 
 c−1

v,e can be satisfied. Conversely, in
strongly magnetized plasmas (a = 10−4), shown in
the right panels of Fig. 3, diffusion in pitch angle
space does not significantly enhance efficient transport
through wave-particle interactions when collisional ef-
fects dominate (τvv > c−1

v,e), as τvv < τμv < τμμ.

4. CYCLOTRON RESONANCE OF
SUPRATHERMAL ELECTRONS AND NATURE

OF WHISTLER WAVES

In this section, we derive the conditions for the
minimum velocity of resonant electrons and the char-
acteristics of whistler waves corresponding to wave-
particle interaction. The criteria described in this
section encompass the characteristics of the turbu-
lent power spectrum, such as its power-law slope, and

Fig. 4. a — Schematic diagrams illustrating whistler turbu-

lence spectra with two different power-law slopes (s1, s2).

Assuming constant energy transport through whistler turbu-

lence, the maximum wavenumber for a steeper (s2) spec-

trum may be smaller than that for a flatter spectrum (s1)

(km2 < km1). b — Schematic diagrams demonstrating the

influence of Coulomb collisions on turbulent energy transport.

Coulomb collisions hinder energy transfer to smaller scales,

potentially resulting in a smaller maximum wavenumber (kcc)

compared to scenarios without Coulomb collisions (kwp)

the effects of Coulomb collisions, as depicted in the
schematic figure (see Fig. 4). Assuming that the en-
ergy transferred through whistler turbulence remains
constant across spectra with arbitrary slopes, the max-
imum wavenumber of a flatter spectrum could be
larger than that of a steeper spectrum. Additionally,
Coulomb collision effects may suppress energy trans-
port to smaller scales, thereby allowing for a larger
maximum wavenumber with stronger Coulomb colli-
sional effects. Such wave characteristics could influ-
ence particle transport through turbulence by deter-
mining the minimum momentum of electrons required
for wave-particle interactions.

Considering only the electron collision term, the
minimum velocity criterion can be derived using the
inequality (31) as follows:

β ≥
(

3

πA
(1− μ2)−1 |μ|(1−s)/3

(vth,e

c

)3
×

× (q − 1)

(
Ω−1

e

ω−1
pe

)(2s+1)/3
(

c−1
v,e

v−3
th,eω

−1
pe

)−1)3/(s+2)

.

(35)
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Fig. 5. a — Minimum electron velocity, b — minimum collisional mean free path, c — maximum wavenumber, and d —

minimum wavelength as functions of pitch angle μ. Solid lines correspond to c−1
v,e/Ω

−1
e = 106, while dashed lines correspond to

c−1
v,e/Ω

−1
e = 107. The results are shown for q = 5 as an example

Here, for simplicity, we consider only electron-electron
collisions since the collisional timescales satisfy
c−1
v,e 
 c−1

v,p. Clearly, more electrons with lower
velocities can be energized through wave-particle inter-
actions when collisional timescales are longer. While
the minimum velocity increases as the magnetic field
strength decreases (or, Ω−1

e increases), we interpret
that these effects could be minor when considering
regimes dominated by wave-particle interactions
(Ω−1

e 
 c−1
v,e). Additionally, a steeper initial slope

of the suprathermal electron distribution q leads to
a larger minimum velocity, indicating that transport
of suprathermal electrons is less likely when q is
sufficiently large.

For low-frequency whistler waves (ωr 
 Ωe), the
wavenumber k‖ and wavelength λ‖ for scattering par-
ticles are derived as follows:

k‖ ≈
nΩe

vμ
, λ‖ ≡

2π

k‖
≈ 2πvμ

nΩe
. (36)

From the inequality (35), we obtain the maximum
wavenumber k‖,max and the minimum wavelength
λ‖,min for wave-particle interactions:

ck‖,max

Ωe
≈ n

μ

[
3

πA
(1 − μ2)−1 |μ|(1−s)/3

(vth,e

c

)3
×

× (q − 1)

(
Ω−1

e

ω−1
pe

)(2s+1)/3
(

c−1
v,e

v−3
th,eω

−1
pe

)−1]−3/(s+2)

,

(37)

λ‖,min ≈
2π

k‖,max
. (38)
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We also consider the minimum collisional length de-
fined as

Ωeλmfp, min

c
≈ βmin

c−1
v,e

Ω−1
e

. (39)

In the criterion (37), the maximum wavenumber de-
creases as the initial slope of the electron distribu-
tion function (q) increases. This indicates that the
wavenumber range of wave-particle interactions could
be reduced when there are fewer suprathermal electrons
(i.e., the spectrum is steeper with larger q).

According to the conditions for resonant scatter-
ing and efficient wave-particle interactions, we explore
the minimum electron velocity and wave properties
relevant to wave-particle interactions across varying
power-law slopes of turbulent spectra. The maximum
wavenumber k‖,max and minimum wavelength λ‖,min,
derived using the inequality (31) that includes Coulomb
collisions and wave-particle interactions, align with the
physical insights demonstrated in Fig. 4. Specifically,
k‖,max decreases and λ‖,min increases as the power-law
slope of the turbulent spectra increases. This suggests
that turbulence with a flatter spectrum is more effi-
cient at transporting particles. Additionally, as shown
by the solid lines in Fig. 5, relatively strong Coulomb
collisions can suppress particle transport by reducing
k‖,max. In contrast, weakly collisional plasmas (rep-
resented by dashed lines in Fig. 5) exhibit greater
k‖,max values. It is important to note that this analysis
generally applies to weakly collisional plasmas where
λ‖,min 
 λmfp, min.

5. SUMMARY AND DISCUSSION

In this work, we demonstrate how wave-particle
interactions through whistler turbulence differ be-
tween weakly and strongly magnetized plasmas.
In strongly magnetized plasmas (characterized by
a = ω2

pe/Ω
2
e 
 1), the diffusion timescales at large

pitch angles (|μ| > 0.5) exhibit saturation for suf-
ficiently small values of a, indicating that strong
magnetic fields effectively regulate particle diffusion
in pitch angle space. In weakly magnetized plas-
mas (where a � 1), on the other hand, large-angle
scattering can be enhanced due to the increased
magnetization factor a. This enhancement suggests
that electron transport via wave-particle interactions
may dominate over Coulomb collisions, facilitated by
enhanced diffusion in pitch angle space. Additionally,
incorporating Coulomb collision effects, we provide
conditions for electron transport through whistler
turbulence, including the minimum electron velocity

and wavelength required for resonant scattering. These
findings are broadly applicable to weakly collisional
astrophysical plasmas, offering insights into the range
of resonant velocities and maximum wavenumbers
for wave-particle interactions across a wide range of
magnetic field strengths parametrized by a. In such
environments, weakly magnetized mediums benefit
from efficient transport via wave-particle interactions,
particularly when suprathermal particles are present.

We further comment on the significance of inves-
tigating particle transport through plasma turbulence
in space and astrophysical media. The generation of
suprathermal particles is feasible through collisionless
shocks or plasma turbulence in various astrophysical
environments, with multi-wavelength emissions serv-
ing as observational evidence of particle acceleration.
While studies on electron transport via whistler turbu-
lence have predominantly focused on non-Maxwellian
electron distributions in solar wind environments, sim-
ilar investigations in diverse astrophysical contexts are
warranted. For example, research has shown that ve-
locity anisotropy in interstellar and intracluster media
can induce whistler waves [27, 40, 41], potentially main-
taining non-Maxwellian electron distributions within
localized regions experiencing whistler turbulence. Ad-
ditionally, it has been shown that suprathermal elec-
trons can be generated by various plasma instabili-
ties in astrophysical media, including whistler, firehose,
mirror, and cyclotron instabilities. In particular, cur-
rent drive exhibited in localized areas, such as the up-
stream and downstream regions of collisionless shocks,
could trigger plasma instabilities that significantly am-
plify the magnetic field and generate suprathermal par-
ticles through waves satisfying cyclotron resonance con-
ditions [26–28, 40–43]. The characteristics of these
plasma instabilities and their acceleration efficiency
depend on the properties of collisionless shocks, in-
cluding the shock Mach number, plasma magnetiza-
tion, and the geometry of the background magnetic
field [27, 40]. Moreover, Lower-Hybrid waves could
be induced by diamagnetic currents in inhomogeneous
plasma systems, which typically propagate in space and
astrophysical plasmas, including those with compress-
ible turbulence. The roles of particle acceleration or
heating through Lower-Hybrid waves have also been
proposed [44, 45]. In this context, it is necessary to
conduct further investigations, including the theory of
particle transport through various plasma instabilities
triggered in astrophysical media, corresponding numer-
ical simulations to support the theory, and complemen-
tary observations representing particle acceleration and
heating.
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