# ДВУМЕРНЫЕ МАГНИТОПЛАЗМОНЫ В ПОЛОСЕ КОНЕЧНОЙ ШИРИНЫ

Р. З. Витлина<sup>а\*</sup>, Л. И. Магарилл<sup>а,b\*\*</sup>, А. В. Чаплик<sup>а\*\*\*</sup>

<sup>а</sup> Институт физики полупроводников им. А. В. Ржанова Сибирского отделения Российской академии наук 630090, Новосибирск, Россия

<sup>b</sup> Новосибирский государственный университет 630090, Новосибирск, Россия

Поступила в редакцию 10 июня 2024 г., после переработки 1 августа 2024 г. Принята к публикации 25 сентября 2024 г.

Влияние границ образца на спектр магнитоплазменных колебаний двумерного электронного газа исследовано на примере прямолинейной полосы. Как и следовало ожидать, при длине волны плазмона много большей ширины полосы дисперсия магнитоплазмона следует формуле для плазменных волн в одномерной системе в смысле зависимости от волнового вектора, однако коэффициент перед главным членом зависит от магнитного поля. Найдены законы дисперсии внутриподзонных плазмонов в случае заселения одной и двух подзон, деполяризационный сдвиг межподзонного плазмона и пространственное распределение электрического поля плазменной волны по поперечной координате. Концентрационные и магнитополевые зависимости плазменной частоты найдены численными методами.

**DOI:** 10.31857/S0044451025010080

# 1. ВВЕДЕНИЕ

Краевой магнитоплазмон (КМП) в двумерной (2D) электронной системе был впервые теоретически исследован в работах Волкова и Михайлова [1,2]. Авторы провели как классическое, так и квантовое рассмотрение проблемы для полуплоскости и нашли закон дисперсии КМП  $\omega(k)$ , где k одномерный импульс плазменной волны вдоль края образца. Естественно поставить вопрос о роли границ в реальном эксперименте, в частности о плазменных волнах в полосе заданной ширины, когда следует учесть также влияние противоположного края. Такая постановка задачи была декларирована во введении к статье Балева и Василопуса [3]. Авторы сформулировали модель полосы с «мягкими» стенками: параболический потенциал для электронов на границах полосы. Однако в дальнейшем при рассмотрении плазменных колебаний ограничились

фактически учетом лишь одного края и получили, естественно, уже известный результат для частоты плазмона. Между тем наличие второй границы приводит к качественно новым чертам явления: следует, строго говоря, рассматривать не краевой плазмон, а собственные моды плоского плазменного волновода (при этом надо иметь в виду, что в таком «волноводе» ограничено в одном направлении лишь движение электронов, тогда как электрическое поле плазменной волны простирается формально до бесконечности). В рамках классического гидродинамического описания 2D-плазмы такая задача решена в работах [4, 5]. Плазмонный спектр в полосе 2Dэлектронов в условиях сильного экранирования металлическим электродом найден в работе [6] в рамках классического рассмотрения в приближении локальной емкости.

В предлагаемой работе мы строим квантовую теорию магнитоплазменных волн в полосе 2D-электронного газа заданной ширины L = 2w. Граничные условия для волновых функций соответствуют твердым стенкам, т.е. поперечное к полосе движение (вдоль оси x) соответствует «обрезанному» при  $x = \pm w$  гармоническому осциллятору с циклотронной частотой  $\omega_c$  и с точкой подвеса

<sup>\*</sup> E-mail: ritta@isp.nsc.ru

<sup>\*\*</sup> E-mail: levm@isp.nsc.ru

<sup>\*\*\*</sup> E-mail: chaplik@isp.nsc.ru

(suspension point)  $X = -pl^2$ , где p — сохраняющаяся в калибровке Ландау y-компонента импульса электрона, l — магнитная длина ( $\hbar = 1$ ). Для уровня Ландау номера n волновая функция имеет вид

$$\Psi_{n,X}(x,y) = N_{n,X}\psi_{n,X}(x)\frac{\exp\left(ipy\right)}{\sqrt{L_y}}.$$
(1)

Здесь  $N_{n,X}$  — нормировочный коэффициент,  $L_y$  — длина полосы. Для функции  $\psi_{n,X}(x)$  имеем (см., например, [7])

$$\psi_{n,X}(x) = e^{-(x-X)^2/2l^2} \times \left[ \Phi(-q_n(X)/2, 1/2, (x-X)^2/l^2) - B(x-X) \Phi\left((1-q_n(X))/2, 3/2, (x-X)^2/l^2\right) \right].$$
(2)

Первый индекс вырожденной гипергеометрической функции в (2) определяет энергию подзон Ландау:

$$q_n(X) = E_n(X)/\omega_c - 1/2$$

через дисперсионное уравнение, следующее из граничных условий  $\psi_{n,X}(x = \pm w) = 0$ . Из этих же условий находится константа B.

Дисперсия подзон Ландау  $E_n(X)$  хорошо известна, графики неоднократно приводились в литературе в связи с исследованиями квантового эффекта Холла (краевые каналы, краевые состояния). Функции  $\psi_{n,X}(x)$  и  $E_n(X)$  нужны для формулировки уравнения плазменных волн.

#### 2. БАЗОВЫЕ УРАВНЕНИЯ

Рассматриваемая здесь задача относится к группе задач о плазменных колебаниях многокомпонентных низкоразмерных систем. Схема решения, т.е. нахождение собственных частот плазмонов таких систем через матричную диэлектрическую функцию в приближении самосогласованного поля изложена в [8] на примере двумерных систем пленочные структуры типа квантовой ямы с более чем одним заселенным уровнем поперечного квантования, двойные квантовые ямы или многослойные сверхрешетки. В случае магнитоплазмонов в полосе 2D-электронного газа отдельным компонентам плазмы соответствуют группы электронов на различных уровнях Ландау (подзоны  $E_n(X)$ ), т.е. одномерные системы. Поэтому меняется вид гриновской функции уравнения Пуассона: теперь  $G_k(x-x') = -K_0(|k(x-x')|)/2\pi$ , где  $K_0$  — функция Макдональда. Другим существенным отличием от [8] является зависимость волновых функций

поперечного движения  $\psi_{n,X}(x)$  (2) от продольного импульса электрона p через точку подвеса осциллятора. С учетом этих отличий уравнение для матричных элементов потенциала плазменной волны  $\varphi(x)e^{iky}$  приобретает вид (мы учли, что правила отбора по импульсу вдоль полосы допускают лишь переходы  $(n, X) \to (m, X + kl^2)$ )

$$\begin{split} \varphi_{n,X;m,X+kl^{2}} &= \\ &= \frac{2e^{2}}{\varepsilon L_{y}} \sum_{m',n',X'} \frac{f(E_{m'}(X'+kl^{2})) - f(E_{n'}(X'))}{E_{m'}(X'+kl^{2}) - E_{n'}(X') + \omega + i\delta} \times \\ &\times J_{m,n;m',n'}(X,X')\varphi_{n',X';m',X'+kl^{2}}, \end{split}$$
(3)

где  $\varepsilon$  — средняя диэлектрическая постоянная двух сред, разделенных 2D-электронным газом, f — фермиевские числа заполнения, а формфакторы  $J_{mn;m'n'}$  определяются формулой

$$J_{m,n;m',n'}(X, X') = = \int_{-w}^{w} \int_{-w}^{w} dx dx' \tilde{\psi}_{n,X}(x) \tilde{\psi}_{m,X+kl^{2}}(x) \times \times K_{0}(|k(x-x')|) \tilde{\psi}_{n',X'}(x') \tilde{\psi}_{m',X'+kl^{2}}(x').$$
(4)

В выражении (4)  $\tilde{\psi}_{n,X}(x) = N_{n,X}\psi_{n,X}(x)$  — нормированная волновая функция поперечного движения. Таким образом, имеем систему линейных однородных интегральных уравнений для функций  $\varphi_{n,X;m,X+kl^2}$ , которые для краткости будем обозначать  $\Phi_{nm}(X)$ . При неограниченном дискретном спектре электронов число уравнений, а следовательно, и число различных плазмонных мод также бесконечно, даже если заселенным будет только один уровень, например,  $E_0(X)$ . Недиагональные члены в (3)  $m \neq n$  соответствуют виртуальным переходам с изменением энергии не меньшим  $\omega_c$ , т.е. отвечают межподзонным плазмонам, спектр которых имеет щель  $\Delta > \omega_c$  при k = 0. Если интересоваться только низкочастотной частью плазмонного спектра  $\omega \ll \omega_c$ , то нужно ограничиться лишь случаем m = n (внутриподзонные плазмоны) и дополнительно потребовать выполнения условия длинноволнового приближения  $kl \ll 1$ . Мы рассмотрим далее как внутри-, так и межподзонные плазмоны из низшей части спектра, т.е. те, которые связаны с уровнями  $E_0(X)$  и  $E_1(X)$ .

# 3. ВНУТРИЗОННЫЙ ПЛАЗМОН НУЛЕВОЙ ПОДЗОНЫ

В этом случае вместо (3) имеем

$$\Phi_{00}(X) = \frac{e^2}{\pi \varepsilon \ l^2} \int dX' \frac{f(E_0(X'+kl^2)) - f(E_0(X'))}{E_0(X'+kl^2) - E_0(X') + \omega + i\delta} \times J_{00,00}(X,X') \Phi_{00}(X').$$
(5)

Считая  $k \ll p \sim p_F (p_F - фермиевский им$ пульс), разложим в (5) разности до линейного по<math>k члена. При этом в формфакторах J следует положить k = 0. При T = 0 в числителе появится  $\delta(E_0(X') - E_F) (E_F - энергия Ферми)$  и интеграл сведется к сумме двух слагаемых — к сумме значений подынтегральной функции в точках  $X' = \pm X_0$ , где  $\pm X_0$  — корни уравнения  $E_0(X) = E_F (E_0(X)$ четная функция X).

Придавая в левой части (5) переменной X значения  $\pm X_0$ , придем к двум линейным однородным уравнениям для величин  $\Phi_{\pm} \equiv \Phi_{00}(\pm X_0)$ :

$$\Phi_{+} = \beta k \left( \frac{J_{+-}}{\omega - kV_{0}} \Phi_{-} - \frac{J_{++}}{\omega + kV_{0}} \Phi_{+} \right), \qquad (6)$$

$$\Phi_{-} = \beta k \left( \frac{J_{--}}{\omega - kV_{0}} \Phi_{-} - \frac{J_{-+}}{\omega + kV_{0}} \Phi_{+} \right),$$

где  $\beta = e^2/\pi\varepsilon, V_0$  — фермиевская скорость в нулевой подзоне, а

$$J_{\pm\pm} = J_{00;00}(\pm X_0, \pm X_0),$$
  
$$J_{\pm\mp} = J_{00;00}(\pm X_0, \mp X_0).$$

Очевидно, что  $J_{-+} = J_{+-}$ . В Приложении показано, что  $J_{--} = J_{++}$ . Таким образом, имеются два независимых формфактора. Корни детерминанта системы (6) определяют частоту плазмона  $\omega_0(k)$ :

$$\omega_0^2(k) = k^2 \left( V_0^2 + \beta^2 (J_{++}^2 - J_{+-}^2) + 2\beta V_0 J_{++} \right).$$
(7)

В интегралах, определяющих  $J_{\pm\pm}$ , функции  $\psi_0^2(x)$  локализованы вблизи точек  $X_0, \pm X_0$  в окрестности порядка l. Поэтому для  $J_{\pm\pm}$  аргумент  $K_0$  мал при условии  $k \to 0$  и можно воспользоваться асимптотикой функции Макдональда

$$K_0(|k(x - x')|) = -\ln(|k(x - x')|e^{\gamma}/2),$$

 $\gamma$ — константа Эйлера. Тогда для  $J_{++}$  получаем

$$J_{++} = \ln\left(\frac{2e^{-\gamma}}{|k|l}\right) + \overline{J}_{++},\tag{8}$$

где

$$\overline{J}_{++} = \int dx dx' \tilde{\psi}_{0,X_0}^2(x) \ln\left(\frac{l}{|x-x'|}\right) \tilde{\psi}_{0,X_0}^2(x').$$
(9)

Главный член в  $J_{++}$  есть  $|\ln(|k|l)|$ . Для формфактора  $J_{+-}$  аргумент у функции  $K_0$  можно положить равным  $2|k|X_0$ , что может и не быть малой величиной даже при  $kl \ll 1$ . Тогда  $J_{+-} = K_0(2|k|X_0)$  и дает логарифмический вклад при более сильном условии  $kX_0 \ll 1$ . При выполнении этого условия для частоты плазмона имеем

$$\omega_0^2(k) = k^2 \left\{ 2\beta \left[ \beta \left( \overline{J}_{++} - \overline{J}_{+-} \right) + V_0 \right] \ln \left( \frac{2e^{-\gamma}}{|k|l} \right) + V_0^2 + \beta^2 \left( \overline{J}_{++}^2 - \overline{J}_{+-}^2 \right) + 2\beta V_0 \overline{J}_{++} \right\}.$$
(10)

Таким образом, получен ожидаемый результат для одномерного (1D) плазмона, найденный в [9,10]:

$$\omega \sim k\sqrt{|\ln(|k|l)|}.$$

Заметим, однако, что в рассматриваемом нами случае зависимость частоты магнитоплазмона от концентрации электронов и от магнитного поля не может быть выражена аналитически. Другим важным отличием является изменение коэффициента перед главным членом с логарифмом: к фермиевской скорости  $V_0$  (случай 1D-плазмона без магнитного поля) добавляется первое слагаемое в квадратной скобке в (10), которое может значительно превышать  $V_0$  (например, при  $N_L = 10^6$  см<sup>-1</sup>, H = 1.6 Тл превышение более, чем на порядок). Результаты численного расчета приведены ниже.

В заключение этого раздела заметим, что полученные в нем формулы применимы вплоть до самого начала плазмонного спектра (k=0), когда длина волны плазмона много больше всех характерных длин задачи, в том числе и ширины полосы L. В этом пределе система эффективно одномерна. Переход в полученных формулах к пределу полуплоскости, исследованной в [1,2], невозможен, так как ему соответствует бесконечно большая L. Законы дисперсии различаются: в полуплоскости частота пропорциональна  $\ln k$ , а в полосе —  $\sqrt{\ln k}$ , как и должно быть для одномерных систем [9, 10].

# 4. ВНУТРИПОДЗОННЫЕ ПЛАЗМОНЫ В ДВУХПОДЗОННОЙ СИСТЕМЕ

Пусть теперь заселены состояния  $E_0(X)$  и  $E_1(X)$ , но недиагональным вкладом  $\Phi_{0,1}$  будем



Рис. 1. Электронный спектр полосы. Показаны две нижние подзоны Ландау, горизонтальная прямая указывает положение уровня Ферми; w/l = 4

пренебрегать. Уровень Ферми лежит между  $E_1(0)$  и  $E_2(0)$  и пересекает кривые  $E_0(X)$  и  $E_1(X)$  соответственно в точках  $\pm X_0$  и  $\pm X_1$  (см. рис. 1). Четыре уравнения для  $\Phi_{00}(\pm X_0)$  и  $\Phi_{11}(\pm X_1)$  приводят к биквадратному уравнению для частот, корни которого равны (здесь мы приводим результаты для предельно малых импульсов плазмона  $kX_0 \ll 1$ , чтобы выяснить поведение  $\omega(k)$  в самом начале спектра):

$$\omega_{ac}^{2} = \frac{k^{2}}{2} \Big( V_{0}^{2} + V_{1}^{2} + \beta^{2} \big[ \overline{J}_{0+;0+}^{2} - \overline{J}_{0+;0-}^{2} + \overline{J}_{1+;1+}^{2} - \overline{J}_{1+;1-}^{2} + 2\overline{J}_{0+;1+}^{2} - 2\overline{J}_{0+;1-}^{2} \big] + 2\beta \Big( V_{0}\overline{J}_{0+;0+} + V_{1}\overline{J}_{1+;1+} \Big) \Big), \quad (11)$$

$$\omega_{opt}^{2} = \omega_{ac}^{2} + 2k^{2} \ln\left(\frac{2e^{-\gamma}}{|k|l}\right) \left[\beta(V_{0} + V_{1}) + \beta^{2} (\overline{J}_{0+;0+} - \overline{J}_{0+;0-} + \overline{J}_{1+;1+} - \overline{J}_{1+;1-} + 2\overline{J}_{0+;1+} - 2\overline{J}_{0+;1-})\right]. \quad (12)$$

Здесь  $V_{0,1}$  — фермиевские скорости в нулевой и первой подзонах; шесть независимых формфакторов вида  $\overline{J}_{0+,0+}, \overline{J}_{0+,1+}$  и т. п. определяются аналогично тому, как это сделано в предыдущем разделе.

Подчеркнем, что в формуле (11) все логарифмические вклады в точности сокращаются. Соответствующий корень дисперсионного уравнения дает линейную зависимость  $\omega_{ac}(k)$  при  $k \to 0$ , что и служит основанием назвать эту ветвь акустической. Второй корень (оптическая ветвь, формула (12)) при  $k \to 0$  дает уже известную сингулярность в нуле:

$$\omega_{opt}^2(k) \sim k^2 |\ln(|k|l)|.$$

# 5. МЕЖПОДЗОННЫЙ ПЛАЗМОН В ДВУХУРОВНЕВОЙ СИСТЕМЕ

Ранг характеристического детерминанта при учете N подзон равен  $N^2$ , т.к. диэлектрическая функция есть матрица 4-го ранга. Из  $N^2$  корней *N* соответствуют внутриподзонным плазмонам, а в остальных N(N-1) каждая пара дает одну межподзонную ветвь, число которых, таким образом, равно N(N-1)/2. Мы рассмотрим низшую из них, связанную с уровнями  $E_0$  и  $E_1$ . Решение задачи в общем виде (при произвольных импульсах плазмона k) связано с чрезвычайно сложными численными расчетами, поскольку ни законы дисперсии электронов, ни формфакторы не выражаются в аналитическом виде. Ограничимся поэтому нахождением пороговой частоты  $\omega_{01}(k = 0)$ , определяющей щель в спектре межподзонного плазмона. Отличие этой величины от минимального расстояния между уровнями Е<sub>0</sub> и Е<sub>1</sub> известно под названием деполяризационного сдвига.

Если в системе (3) оставить лишь уравнения с m = 0, 1 и n = 0, 1 и перейти к пределу  $k \to 0$ , то в правых частях останется только недиагональный элемент  $\varphi$ , т.к. в диагональных разность чисел заполнения в числителе при k = 0 обратится в нуль. В том же пределе функция  $K_0(|k(x - x')|)$  заменяется выражением

$$\ln(2e^{-\gamma}/|k(x-x')|) = \ln(2e^{-\gamma}/|k|l) + \ln(l/|x-x'|).$$

Первое слагаемое не дает вклада в формфактор  $J_{01,01}$  из-за ортогональности волновых функций  $\psi_{0,X}(x)$  и  $\psi_{1,X}(x)$ . В результате приходим к уравнению

$$\Phi_{01}(X) = \frac{2\beta}{l^2} \int_{-X_0}^{X_0} dX' \times \frac{\Delta(X')}{\omega^2 - \Delta(X')^2} Q(X, X') \Phi_{01}(X'), \quad (13)$$



Рис. 2. Зависимость деполяризационного сдвига межподзонного плазмона на уровнях 0 и 1 от магнитного поля;  $D = \Omega/\Delta(X = 0) - 1, N_L = 0.47 \cdot 10^6 \text{ см}^{-1}, L = 0.1 \text{ мкм}$ 

где  $\Delta(X) = E_1(X) - E_0(X)$ . В однородном интегральном уравнении (13)  $\omega^2$  является искомым собственным числом, причем нужно его минимальное значение  $\omega_{min}^2$ , а множитель Q(X, X') в ядре уравнения равен

$$Q(X, X') = \int_{-w}^{w} \int_{-w}^{w} dx dx' \tilde{\psi}_{0,X}(x) \tilde{\psi}_{1,X}(x) \times \\ \times \ln(l/|x - x'|) \ \tilde{\psi}_{0,X'}(x') \tilde{\psi}_{1,X'}(x').$$
(14)

Значение  $\omega_{min}^2$  было найдено численно. Мы заменили интеграл соответствующей ему суммой Римана, разбив интервал интегрирования на большое число точек, т. е. свели задачу к нахождению собственных чисел системы линейных однородных уравнений, число которых равно числу точек разбиения. Деполяризационный сдвиг  $\Omega$  определяется как разность минимальной частоты  $\omega_{min}$  и минимального расстояния между уровнями  $\Delta(0)$ . Его зависимость от магнитного поля приведена на рис. 2.

Как известно, деполяризационный сдвиг определяет также частоту ИК-поглощения при межподзонном (в безграничной плоскости межуровневом) переходе, которая не равна расстоянию между уровнями из-за динамического экранирования электрического поля возбуждающей волны.



**Рис. 3.** Распределение потенциала плазменной волны по поперечной коорлинате для двух противоположных направлений распространения или направлений магнитного поля;  $N_L = 10^6$  см<sup>-1</sup>, L = 0.2 мкм, H = 1 Тл

## 6. ПРОСТРАНСТВЕННОЕ РАСПРЕДЕЛЕНИЕ ПОЛЯ ПЛАЗМЕННОЙ ВОЛНЫ

В этом разделе мы получим выражение для координатной зависимости потенциала  $\varphi(x)$  плазмона, соответствующего нулевой подзоне, т. е. самой нижней по частоте ветви плазмонного спектра. В рамках теории самосогласованного поля  $\varphi(x)$  подчиняется уравнению Пуассона (квазистатическое приближение, запаздывание не учитывается), в правой части которого стоит добавка к электронной плотности, индуцированная плазменной волной. В рассматриваемом случае нужно учесть лишь вклад в эту добавку от нулевой подзоны:

$$\Delta_{x,z}\varphi_0(x,z,k) - k^2\varphi_0(x,z,k) = = -\frac{4\pi e^2}{\varepsilon L_y}\delta(z)\sum_X \frac{f(E_0(X+kl^2)) - f(E_0(X))}{E_0(X+kl^2) - E_0(X) + \omega + i\delta} \times \times \Phi_{00}(X)\tilde{\psi}^2_{0,X}(x).$$
(15)

Уравнение (15) соответствует плазмону в виде плоской волны  $Ce^{iky}$ , а матричный элемент  $\Phi_{00}(X)$  в правой части берется на плоскости полосы z = 0. Решение уравнения (15) записывается через гриновскую функцию G(x-x'), определенную в разд. 2 уже на плоскости z = 0. Получившийся интеграл для  $\varphi_0(x)$  в длинноволновом пределе и при T = 0 вычисляется таким же образом, как при нахождении частоты  $\omega_0(k)$ . Теперь необходимо найти сами решения системы двух уравнений (6) для матричных



Рис. 4. Зависимость частоты плазмона от линейной концентрации электронов. Магнитное поле H=1 Тл, ширина полосы L=0.2 мкм

элементов  $\Phi_{00}(X)$  в точках  $\pm X_0$ . Результат имеет вид (C — амплитуда волны, задаваемая условиями ее возбуждения)

$$\varphi_{0}(x) = Ck\beta \left( \frac{I_{-}(x)}{\omega_{0}(k) - kV_{0}} - \frac{RI_{+}(x)}{\omega_{0}(k) + kV_{0}} \right),$$

$$I_{\pm}(x) = \int_{-w}^{w} dx' K_{0}(|k(x - x')|) \tilde{\psi}_{0,\pm X_{0}}^{2}(x'), \quad (16)$$

$$R = \frac{\omega_{0}(k) + kV_{0}}{\omega_{0}(k) - kV_{0}} \frac{k\beta J_{++} - \omega_{0}(k) + kV_{0}}{k\beta J_{+-}}.$$

На рис. 3 показано поле плазмона  $\varphi_0(x)$  для противоположных направлений распространения. Как видно, при заданном направлении распространения максимум  $\varphi(x)$  имеется липь у какого-то одного края полосы. Этот результат был получен в работе [2] в рамках гидродинамического подхода.

Такое же зеркальное отображение имеет место при изменении направления магнитного поля: легко понять, что под X следует понимать  $-pl^2 \operatorname{sign}(H)$ , а  $l^2 = c/|eH|$ . Поэтому при смене знака H точки  $X_0$  и  $-X_0$  меняются местами. Это «отражение» поля плазмона относительно срединной линии полосы при изменении знака магнитного поля в принципе доступно экспериментальному наблюдению. При  $l \ll w$  и при энергии Ферми такой, что точки  $\pm X_0$ близки к краям полосы, максимум  $\varphi(x)$  также близок к одному из краев, и в этом смысле такую волну можно назвать краевым магнитоплазмоном.



Рис. 5. Магнитополевая зависимость частоты плазмона;  $N_L=10^6\,{\rm cm}^{-1}$ ,  $L=0.2\,{\rm мкм},~k=0.4\cdot10^6\,{\rm cm}^{-1}$ 

## 7. ЗАВИСИМОСТИ ОТ КОНЦЕНТРАЦИИ И МАГНИТНОГО ПОЛЯ

Дисперсия электрона  $E_0(p)$  (см. рис. 1) существенно отличается от стандартной параболической  $p^2/2m$ . Соответственно, и все характеристики магнитоплазмона в полосе (зависимость частоты от концентрации электронов и от магнитного поля) выглядят необычно. Для внутриподзонного плазмона нулевой подзоны система эффективно одномерна, поэтому  $p_F = \pi N_L/2$ , где  $N_L$  — линейная плотность электронов (спиновым расщеплением пренебрегаем), а  $X_0 = \pi N_L l^2/2$ . Зависимость  $E_F$  от  $N_L$ дается, следовательно, правой половиной нижней кривой на рис. 1. Зависимость частоты  $\omega_0$  от линейной плотности содержится в фермиевской скорости  $V_0$  и через  $X_0$  в формфакторах, входящих в формулу (7). Результаты приведены на рис. 4.

Пунктирная прямая на этом рисунке проведена, чтобы показать суперлинейный характер зависимости. Напомним в связи с этим, что классический 2Dплазмон имеет частоту, сублинейно зависящую от поверхностной плотности  $N_s$ :

$$\omega = (\omega_c^2 + \omega_p^2)^{1/2},$$

где  $\omega_p^2 \propto N_s$ .

Магнитная дисперсия плазмона еще более необычна: кривая на рис. 5 имеет минимум при  $H \approx 2$  Тл. Дело в том, что, как видно из (10), зависимость частоты плазмона от магнитного поля обусловлена вкладами двух типов. Члены, содержащие фермиевскую скорость  $V_0$ , обеспечивают падающий участок кривой на рис. 5, поскольку при заданной плотности уровень Ферми быстро опускается с ростом H и приближается к плоскому участку электронной дисперсии  $E_0(p)$ , где  $V_0$  обращается в нуль. Тогда главным остается первое (кулоновское) слагаемое в (10), которое дает логарифмически медленный рост частоты.

Для деполяризационного сдвига (рис. 2) характерно быстрое убывание при относительно небольшом увеличении H: более, чем на порядок при  $\delta H/H$ = 75%. С увеличением поля поведение волновых функций электронов приближается к тому, которое реализуется в безграничной плоскости, так как уменьшается влияние границ полосы. Но в бесконечной плоскости  $\Omega = 0$ , поскольку в сильном магнитном поле отсутствует экранирование (во всяком случае линейное) и вместе с ним отсутствуют возмущения плотности электронов, линейные по возмущающему потенциалу.

# 8. ЗАКЛЮЧЕНИЕ

Мы показали, что на магнитоплазменные колебания двумерного электронного газа существенно влияет учет границ образца. Математически задача значительно усложняется нестандартным законом дисперсии «замагниченных» электронов – зависимостью энергии от сохраняющейся компоненты импульса в калибровке Ландау. В простом случае прямолинейной полосы аналитически удается найти лишь дисперсию внутриподзонных плазмонов в длинноволновом пределе, относящихся к нижней части спектра плазменных колебаний, содержащего, вообще говоря, бесконечное число ветвей. Концентрационные и магнитополевые зависимости плазменной частоты найдены численными методами.

Благодарности. Авторы благодарны В. А. Волкову и И. В. Кукушкину за помощь в ознакомлении с библиографией вопроса, а также А. В. Ненашеву за полезные советы при проведении численных расчетов.

#### приложение

Здесь мы покажем справедливость соотношения  $J_{--} = J_{++}$ . Для этого нам понадобится выражение для  $\psi_{n,X}(x)$ , уже учитывающее граничные условия. Оно имеет вид

$$\psi_{n,X}(x) = e^{-(x-X)^2/2l^2} >$$

$$\times \left[ \Phi\left(-q_n(X)/2, 1/2, (x-X)^2/l^2\right) - \Phi\left((1-q_n(X))/2, 3/2, (x-X)^2/l^2\right) \times \frac{(x-X)\Phi\left(-q_n(X)/2, 1/2, (w-X)^2/l^2\right)}{(w-X)\Phi\left((1-q_n(X))/2, 3/2, (w-X)^2/l^2\right)} \right].$$
 (17)

Кроме того, необходим явный вид уравнения, определяющего спектр электрона, т.е. параметр  $q_n(X)$ . Для него имеем

$$F(q_n(X)) = 0, (18)$$

$$F(q) = \frac{\Phi\left(-q/2, 1/2, (w-X)^2/l^2\right)}{(w-X)\Phi\left((1-q)/2, 3/2, (w-X)^2/l^2\right)} + \frac{\Phi\left(-q/2, 1/2, (w+X)^2/l^2\right)}{(w+X)\Phi\left((1-q)/2, 3/2, (w+X)^2/l^2\right)}.$$
 (19)

- ( )- ( --) 2 (-2)

Используя явные выражения для формфакторов  $J_{\pm\pm}$ , запишем разность  $J_{--} - J_{++}$ :

$$J_{--} - J_{++} = \int_{-w}^{w} \int_{-w}^{w} dx dx' K_0(|k(x - x')|) \times \left[ N_{0,-X}^4 \psi_{0,-X}^2(x) \psi_{0,-X}^2(x') - N_{0,X}^4 \psi_{0,X}^2(x) \psi_{0,X}^2(x') \right], \quad (20)$$

где  $\psi_{n,X}(x)$  определена в (17). Сделав замену переменных интегрирования в первом слагаемом в квадратных скобках (20), приходим к выражению

$$J_{--} - J_{++} = \int_{-w}^{w} \int_{-w}^{w} dx dx' K_0(|k(x - x')|) \times \left[ N_{0,-X}^4 \psi_{0,-X}^2(-x) \psi_{0,-X}^2(-x') - N_{0,X}^4 \psi_{0,X}^2(x) \psi_{0,X}^2(x') \right].$$
(21)

Видно, что для доказательства равенства  $J_{--} = J_{++}$  достаточно показать, что выполняются соотношения  $\psi_{0,-X}(-x) = \psi_{0,X}(x)$  и  $N_{0,-X} = N_{0,X}$ .

Воспользовавшись (17), получаем

$$\psi_{0,-X}(-x) - \psi_{0,X}(x) = e^{-(x-X)^2/2l^2} (x-X) \times \\ \times \Phi((1-q_0(X))/2, 3/2, (x-X)^2/l^2) \times \\ \times \left[ \frac{\Phi(-q_0(X)/2, 1/2, (w-X)^2/l^2)}{(w-X)\Phi((1-q_0(X))/2, 3/2, (w-X)^2/l^2)} + \frac{\Phi(-q_0(X)/2, 1/2, (w+X)^2/l^2)}{(w+X)\Phi((1-q_0(X))/2, 3/2, (w+X)^2/l^2)} \right].$$
(22)

В квадратные скобки в (22) заключена функция  $F(q_0(X))$ , определенная в (19), и следовательно

$$\psi_{0,-X}(-x) = \psi_{0,X}(x). \tag{23}$$

Для  $N_{0,-X}$  имеем

$$N_{0,-X} = \left(\int_{-w}^{w} dx \psi_{0,-X}^2(x)\right)^{-1/2}$$

Сделаем в интеграле по x замену  $x \to -x$ . В результате с учетом (23) доказывается четность нормировочного коэффициента по X.

## ЛИТЕРАТУРА

- В. А. Волков, С. А. Михайлов, Письма в ЖЭТФ 42, 450 (1985).
- В. А. Волков, С. А. Михайлов, ЖЭТФ 94, 217 (1988).
- O. G. Balev and V. Vasilopulos, Phys. Rev. B 59, 2807 (1999).
- I. L. Aleiner, D. Xue, and L. I. Glazman, Phys. Rev. B 51, 13467 (1995).
- G. Eliasson, J. Wu, P. Hawrylak, and J. J. Quonn, Solid State Commun. 60, 4111 (1986).
- Д. А. Родионов, И. В. Загороднев, Письма в ЖЭТФ 118, 90 (2023).
- A. H. MacDonald and P. Streda, Phys. Rev. B 29, 1616 (1984).
- Р. З. Витлина, А. В. Чаплик, ЖЭТФ 81, 1011 (1981).
- A. V. Chaplik and M. V. Krasheninnikov, Surface Science 98, 533 (1980).
- 10. S. Das Sarma and W. Y. Lai, Phys. Rev. B 32, 1401 (1985).