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Within the scope of a spherically symmetric FLRW cosmological model we have studied the role of nonlinear

spinor field in evolution of the universe. It is found that if the FLRW model given by the spherical coordinates

the energy-momentum tensor (EMT) of the spinor field possesses nontrivial non-diagonal components. These

non-diagonal components of EMT neither depend on the spinor field nonlinearity nor on the value of parameter k

defining the type of curvature of the FLRW model. The presence of such components imposes some restrictions

on the spinor field. The problem is studied for open, flat and close geometries. In doing so we exploited the

spinor description of sources such as perfect fluid and dark energies. Some qualitative numerical solutions are

given.
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1. INTRODUCTION

Thanks to its ability to simulate different kinds of
matter such as perfect fluid, dark energy etc. spinor
field is being used by many authors not only to de-
scribe the late time acceleration of the expansion, but
also to study the evolution of the Universe at different
stages [1–8].

It was found that the spinor field is very sensitive to
spacetime geometry. Depending on the concrete type
of metric the spinor field may possess different type
of nontrivial non-diagonal components of the energy-
momentum tensor. As a result the spinor field imposes
various kinds of restrictions on both the spacetime ge-
ometry and the spinor field itself [9].

Recently spinor field is used in astrophysics to see
whether its specific behavior can shed any new light in
the study of objects like black hole and wormhole. Such
studies were carried out within the scope of spherically
symmetric [10, 11] and cylindrically symmetric space-
time [12, 13].

* E-mail: bijan@jinr.ru

Since the present-day universe is surprisingly
isotropic and the presence of nontrivial non-diagonal
components of the spinor field leads to the severe
restrictions on the spinor field, we have studied role
of a spinor field in Friedmann-Lemaitre-Robertson-
Walker (FLRW) model as well. But in those cases
the space-time was given in Cartesian coordinates. In
order to see influence of the coordinate transformations
on spinor field some works were done by us earlier
[14, 15]. In this paper we will further develop those
studies and see how the spinor field behaves if the
isotropic and homogeneous cosmological FLRW model
given by spherical coordinates.

2. BASIC EQUATION

The action we choose in the form

S =

∫ √
−g
[
R

2κ
+ Lsp

]
dΩ, (1)

where κ = 8πG is Einstein’s gravitational constant, R
is the scalar curvature and Lsp is the spinor field La-
grangian given by [16]

Lsp =
i

2

[
ψ̄γμ∇μψ −∇μψ̄γ

μψ

]
−mψ̄ψ − λF (K). (2)
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To maintain the Lorentz invariance of the spinor
field equations the nonlinear term F (K) in (2) is con-
structed as some arbitrary functions of invariants gen-
erated from the real bilinear forms. On account of Fierz
equality in (2) we set K = K(I, J) = b1I + b2J, where
b1 and b2 takes the value 0 or 1 which leads to the fol-
lowing expressions for K = {I, J, I + J, I − J}. Here
I = S2 and J = P 2 are the invariants of bilinear spinor
forms with S = ψ̄ψ and P = iψ̄γ̄5ψ being the scalar
and pseudo-scalar, respectively. In (2) λ is the self-
coupling constant. Note that λ can be both positive
and negative, while λ = 0 leads to linear case. Here m
is the spinor mass.

The covariant derivatives of spinor field takes the
form [16]

∇μψ = ∂μψ − Ωμψ, ∇μψ̄ = ∂μψ̄ + ψ̄Ωμ, (3)

where Ωμ is the spinor affine connections, defined
as [16]

Ωμ =
1

4
gρσ

(
∂μe

(b)
τ eρ(b) − Γρ

μτ

)
γσγτ . (4)

In (4) Γβ
μα is the Christoffel symbol and the Dirac

matrices in curve space–time γ are connected to the
flat space–time Dirac matrices γ̄ in the following way

γβ = e
(b)
β γ̄b, γα = eα(a)γ̄

a, (5)

where eα(a) and e
(b)
β are the tetrad vectors such that

gμν(x) = eaμ(x)e
b
ν(x)ηab, (6)

and fulfil following relations

eα(a)e
(a)
β = δαβ , eα(a)e

(b)
α = δba. (7)

Here ηab = diag(1, −1, −1, −1) is the Minkowski
spacetime. The γ matrices obey the following anti-
commutation rules

γμγν + γνγμ = 2gμν, γμγν + γνγμ = 2gμν. (8)

Varying the Lagrangian (2) with respect to ψ̄ and
ψ, respectively, we obtain the following spinor field
equations

iγμ∇μψ −mψ −Dψ − iGγ̄5ψ = 0, (9a)

i∇μψ̄γ
μ +mψ̄ +Dψ̄ + iGψ̄γ̄5 = 0, (9b)

where D = 2λFKb1S, G = 2λFKb2P.

The energy momentum tensor of the spinor field is
defined in the following way [16]

T ρ
μ =

=
i

4
gρν
(
ψ̄γμ∇νψ+ ψ̄γν∇μψ−∇μψ̄γνψ−∇ν ψ̄γμψ

)
−

− δρμL, (10)

which in view of (3) we rewrite as

T ρ
μ =

=
i

4
gρν
(
ψ̄γμ∂νψ + ψ̄γν∂μψ − ∂μψ̄γνψ − ∂νψ̄γμψ

)
−

− i

4
gρνψ̄

(
γμΩν +Ωνγμ + γνΩμ +Ωμγν

)
ψ − δρμL.

(11)

Note that the non-diagonal components of the EMT
arises thanks to the second term in (11). Moreover, let
us emphasize that in view of the spinor field equations
(9) the spinor field Lagrangian (2) can be expressed as

L = λ (2KFK − F ) , FK = dF/dK. (12)

We exploit this form of Lagrangian in solving Einstein
equations, as they should be consistent with the Dirac
one, as (12) is valid only when spinor fields obey Dirac
equations (9). Let us also note that in case F =

√
K

the Lagrangian vanishes which is very much expected
as in this case spinor field becomes linear. We are in-
terested in nonlinear spinor field as only it can generate
different kinds of source fields.

The isotropic and homogeneous cosmological model
proposed by Friedmann, Lemaitre, Robertson and
Walker independently is the most popular and thought
to be realistic one among the cosmologists. Let us con-
sider the FLRW model in spherical coordinates in its
stanard form [17]:

ds2 = dt2 − a2(t)

[
dr2

1− kr2
+ r2dϑ2 + r2 sin2 ϑdφ2

]
,

(13)
with k taking the values +1, 0 and −1 which corre-
sponds to a close, flat and open universe, respectively.
Though the value of k defines the type of geometry of
space-time, in reality it is defined by the contents that
filled universe. As we see later, independ to the value
of k the universe filled with dark energy is always open,
whereas for perfect fluid the value of k really matters.
In this case depending on the value of k we obtain close,
flat or open universe.

In view of (6) the tetrad we will choose in the form

e
(0)
0 = 1, e

(1)
1 =

a√
1− kr2

,

e
(2)
2 = ar, e

(3)
3 = ar sinϑ.

Then from (5) we find the following γ matrices

γ0 = γ̄0, γ1 =

√
1− kr2

a
γ̄1,
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γ2 =
γ̄2

ar
, γ3 =

γ̄3

ar sinϑ
.

Further from γμ = gμνγ
ν one finds the γμ as well.

The Christoffel symbols, Ricci tensor and scalar
curvature and the Einstein tensor corresponding to the
metric (13) are well known and can be found in [17].

Then from (4) we find the following expressions for
spinor affine connection

Ω0 = 0, (14a)

Ω1 =
1

2
√
1− kr2

ȧγ̄1γ̄0, (14b)

Ω2 =
1

2
rȧγ̄2γ̄0 +

1

2

√
1− kr2γ̄2γ̄1, (14c)

Ω3=
1

2
ȧr sinϑγ̄3γ̄0+

1

2

√
1−kr2 sinϑγ̄3γ̄1+

+
1

2
cosϑγ̄3γ̄2. (14d)

Let us consider the case when the spinor field depends
on t only, then in view of (14) the spinor field equations
can be written as

ψ̇ +
3

2

ȧ

a
ψ +

√
1− kr2

ar
γ̄0γ̄1ψ +

cotϑ

2ar
γ̄0γ̄2ψ+

+i (m+D) γ̄0ψ + Gγ̄5γ̄0ψ = 0, (15a)

˙̄ψ +
3

2

ȧ

a
ψ̄ −

√
1− kr2

ar
ψ̄γ̄0γ̄1 − cotϑ

2ar
ψ̄γ̄0γ̄2−

−i (m+D) ψ̄γ̄0 + Gψ̄γ̄5γ̄0 = 0, (15b)

Introducing ϕ = a3/2ψ we rewrite the equation (15)

ϕ̇+

√
1− kr2

ar
γ̄0γ̄1ϕ+

cotϑ

2ar
γ̄0γ̄2ϕ+

+i (m+D) γ̄0ϕ+ Gγ̄5γ̄0ϕ = 0, (16a)

˙̄ϕ−
√
1− kr2

ar
ϕ̄γ̄0γ̄1 − cotϑ

2ar
ϕ̄γ̄0γ̄2−

−i (m+D) ϕ̄γ̄0 + Gϕ̄γ̄5γ̄0 = 0, (16b)

The equation (16a) can be presented in the matrix form

ϕ̇ = Aϕ, (17)

or⎛⎜⎜⎜⎜⎝
ϕ̇1

ϕ̇2

ϕ̇3

ϕ̇4

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
−iD1 0 −G B1

0 −iD1 B∗
1 −G

G B1 iD1 0

B∗
1 G 0 iD1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

ϕ1

ϕ2

ϕ3

ϕ4

⎞⎟⎟⎟⎟⎠ ,

(18)

where

D1 = (m+D) , B1 = −
√
1− kr2

ar
+ i

cotϑ

2ar
,

B∗
1 = −

√
1− kr2

ar
− i

cotϑ

2ar
.

It can be shown that

detA =
(
D2

1 + G2 −B1B
∗
1

)2
.

We can choose the nonlinearity in such a way that the
corresponding determinant is nontrivial. In that case
the solution (17) can be formally written as [18]

ϕ(t) = T exp

⎛⎝− t1∫
t

A1(τ)dτ

⎞⎠ , (19)

where T = ϕ(t1) is the solution at t = t1. Given the
fact that the universe is expanding and the spinor field
invariants are the inverse functions of scale factor, in
case of a nonzero spinor mass one can assume

ϕ(t1) = col
(
ϕ0
1e

−imt1 , ϕ0
2e

−imt1 , ϕ0
3e

imt1 , ϕ0
4e

imt1
)
,

whereas for a massless spinor field

ϕ(t1) = col
(
ϕ0
1, ϕ

0
2, ϕ

0
3, ϕ

0
4

)
with ϕ0

i being constants.
The non-trivial components of the energy momen-

tum tensor of the spinor field in this case read

T 0
0 = mS + λF, (20a)

T 1
1 = T 2

2 = T 3
3 = −λ (2KFK − F ) , (20b)

T 1
3 =

a cosϑ

4
√
1− kr2

A0, (20c)

T 0
1 =

cotϑ

4r
√
1− kr2

A3, (20d)

T 0
2 = −3

4

√
1− kr2 A3, (20e)

T 0
3 =

3

4

√
1− kr2 sinϑA2 − 1

2
cosϑA1. (20f)

From (20) we conclude that the energy-momentum
tensor of the spinor field contains nontrivial non-
diagonal components. The non-diagonal components

• do not depend on the spinor field nonlinearity;

• occur due to the spinor affine connections;

• appear depending on space-time geometry as well
as the system of coordinates;

• impose restrictions on spinor field and/or space-
time geometry;

• do not depend on the value of k which defines the
type of curvature.
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It should be emphasized that for a FLRW model
given in Cartesian coordinate the EMT have only di-
agonal components with all the non-diagonal one being
identically zero [19]. So in this case the non-diagonal
components arise as a result of coordinate transforma-
tion. Note also that all cosmological spacetime de-
fined by diagonal matrices of Bianchi type V I, V I0,
V , III, I LRS − BI and FLRW , but has nontriv-
ial non-diagonal elements that differ from each other in
different cases [9]. Moreover, non-diagonal metrics such
as Bianchi type II, V III and IX also have nontrivial
non-diagonal components of EMT. Consequently, we
see that the appearance of non-diagonal components
of the energy-momentum tensor occurs either due to
coordinate transformations or due to the geometry of
space-time.

As one sees, the components of the EMT of the
spinor field contains some spinor field invariants. To
define those invariants let us write the system of equa-
tions for the invariants of the spinor field. It can be
obtained from the spinor field equation (15):

Ṡ0 + 2GA0
0 = 0, (21a)

Ṗ0 − 2 (m+D)A0
0 = 0, (21b)

Ȧ0
0 + 2GS0 + 2 (m+D)P0+

+2

√
1− kr2

ar
A1

0 +
cotϑ

ar
A2

0 = 0, (21c)

Ȧ1
0 + 2

√
1− kr2

ar
A0

0 = 0, (21d)

Ȧ2
0 +

cotϑ

ar
A0

0 = 0, (21e)

that gives the following relation between the invariants:

P 2
0 − S2

0 +
(
A0

0

)2 − (A1
0

)2 − (A2
0

)2
= C0, C0 = const.

(22)

In (21) and (22) the quantities with a subscript «0»
are related to the normal ones as follows: X0 = Xa3.

From (22) we can conclude that since C0 is an arbitrary
constant, the each term of (22) should be constant as
well.

In order to solve the Einstein equations we have to
know how the components of the EMT are related to
the metric functions. In order to know that let us find
the invariant K in general. We consider the 4 cases
separately.

In case of K = I, G = 0. In this case from (21a) we
find

S =
Cs

a3
, ⇒ K =

C2
s

a6
. (23)

If K = J , then in case of a massless spinor field
from (21b) we find

P =
Cp

a3
, ⇒ K =

C2
p

a6
. (24)

Let us consider the case when K = I + J . In this
case b1 = b2 = 1. Then on account of expression for
D and G from (21a) and (21b) for the massless spinor
field we find

Ṡ0 + 4λa3FKPA0 = 0, (25a)

Ṗ0 − 4λa3FKSA0 = 0, (25b)

which yields

K = I + J = S2 + P 2 =
C2

1

a6
. (26)

Finally in case when K = I − J , i.e. b1 = −b2 = 1

from (21a) and (21b) for the massless spinor field we
find

Ṡ0 + 4λa3FKPA0 = 0, (27a)

Ṗ0 + 4λa3FKSA0 = 0, (27b)

which yields

K = I − J = S2 − P 2 =
C2

2

a6
. (28)

Thus we see that the invariantK is a function of metric
function a, namely, K = const. a−6 and it is what we
need to solve the Einstein equation. In what follows we
solve the Einstein equation.

Let us recall that the Einstein tensor Gν
μ corre-

sponding to the metric (13) possesses only nontrivial
diagonal components. Hence the general Einstein sys-
tem of equations

Gν
μ = −8πGT ν

μ , (29)

leads to the following non-diagonal expressions

0 = T ν
μ , μ 	= ν. (30)

In view of (20c)–(20f) from (30) one dully finds that

A0 = 0, A3 = 0, A1 = (3/2)
√

1− kr2 tg ϑA2.

(31)

Note that since the FLRW model given by the Carte-
sian coordinate the non-diagonal components of EMT
are identically zero, hence relation such as (31) does
not exist.
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In view of A0 = 0, A3 = 0 from the system (21) we
find

S0 = CS , P0 = CP , A1
0 = C1

0 , A2
0 = C2

0 , (32)

with CS , CP , C1
0 and C2

0 being some arbitrary con-
stants. Thus we see that K = const. a−6. Note that
the equation (21c) in this case in redundant and (31)
gives relations between the constants C1

0 and C2
0 .

We are now ready to consider the diagonal compo-
nents of the Einstein system of equations which for the
metric (13) takes the form

2
ä

a
+

(
ȧ2

a2
+

k

a2

)
= 8πGT 1

1 , (33a)

3

(
ȧ2

a2
+

k

a2

)
= 8πGT 0

0 . (33b)

On account of (33b) we rewrite (33a) in the form

ä

a
= −4πG

3

(
T 0
0 − 3T 1

1

)
= −4πG

3
(ε+ 3p) , (34)

where ε and p are the the energy density and and pres-
sure, respectively:

ε = T 0
0 = mS + λF, (35a)

p = −T 1
1 = λ (2KFK − F ) . (35b)

On account of (20a) and (20b) from (34) we find

ä = −4πG

3
(mS − 2λF + 6λKFK) a. (36)

Note that the equations (34) or (36) do not contain k

that defines the type of space-time curvature. In order
to take this very important quantity into account we
have to exploit (33b) as the initial condition for ȧ. The
equation (33b) we rewrite in the form

ȧ = ±
√
(8π/3)Gεa2 − k =

= ±
√
(8π/3)G (mS + λF ) a2 − k, (37)

Now we can solve (36) with the initial condition
given by (37). It comes out that these equations are
consistent when one takes the negative sign in (37).
Alternatively, one can solve (37), but for the system to
be consistent he has to check whether the result satis-
fies (36).

As we have already established, S, K, hence F (K)

are the functions of a. Consequently, given the spinor
field nonlinearity the foregoing equation can be solved
either analytically or numerically.

The equation (36) can be solved analytically. The
first integral of (36) takes the form

ȧ =

√∫
f(a)da+ Cc, (38)

where we define

f(a) = −8πG

3
(mS − 2λF + 6λKFK) a

and Cc is a constant which should be defined from
(37). The solution to the equation (38) can be given in
quadrature ∫

da√∫
f(a)da+ Cc

= t. (39)

In what follows we solve the system (33) numeri-
cally. In doing so we rewrite it in the following way:

ȧ = Ha, (40a)

Ḣ = −3

2
H2 − 1

2

k

a2
− 4πGλ (2KFK − F ) , (40b)

H2 =
8πG

3
(mS + λF ) − k

a2
, (40c)

where H is the Hubble constant.
As one sees, in the foregoing system the first two

are differential equations, whereas the third one is a
constraint, which we use as the initial condition for H :

H = ±
√
8πG (mS + λF ) /3− k/a2. (41)

Since the expression under the square-root must be
non-negative, it imposes some restrictions on the choice
of initial value of a as well. Note that initial value of H
depends on spinor mass m, coupling parameter λ and
the value of k.

3. NUMERICAL SOLUTIONS

In what follows we solve the equations (40a) and
(40b), numerically. The third equation of the system
(40) we exploit as initial condition for H(t) in the form
(41). We do it for both massive and massless spinor
field. Beside this, we consider close, flat and open uni-
verse choosing different values for k. As it was men-
tioned earlier, the coupling constant λ can be positive
or negative. Let us recall that

K =
K0

a6
, K0 = const. (42)

The foregoing relation holds for K = {I, J, I ± J} for
a massless spinor field, whereas for K = I = S2 it is
true for both massive and massless spinor field. Hence
we assume that K = I = S2. We consider different
kind of spinor field nonlinearities F (K) (equivalently,
F (S)), that describes various types of sources from per-
fect fluid to dark energy.
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Fig. 1. Evolution of the FLRW Universe (scale factor a(t)) in

presence of a radiation given by a massless spinor field. The

blue solid, red dash-dot and black long dash lines stand for

close, flat and open (k = +1, 0, −1) universe, respectively

3.1. Barotropic equation of state

Let us consider the case when the Universe is filled
with perfect fluid or dark energy given by quintessence,
Λ-term or phantom matter. It can be implemented
by the barotropic equation of state (EoS), which gives
a linear dependence between the pressure and energy
density and was exploited by many authors [20–23].
The corresponding EoS takes the form

p = Wε, (43)

where the EoS parameter W is a constant. Depending
on the value of W , the Eq. (43) can give rise to both
perfect fluid, such as dust, radiation etc. and dark en-
ergy such as quintessence, cosmological term, phantom
matter etc. For W ∈ [0, 1], it describes a perfect fluid.
The value W = −1 represents a typical cosmological
constant (Λ-term) [24–26], whereas W ∈ [−1, −1/3]
gives rise to a quintessence, while for W < −1 it as-
cribes a phantom matter.

It was shown in [9, 27] that inserting (35) into (43)
the matter or energy corresponding to Eq. (43) can be
simulated by the nonlinear term given by

F (S) = λS1+W −mS, λ = const., (44)

in the spinor field Lagrangian (2).
Let us now solve (40) numerically for the non-

linear term given by (44). We consider both mas-
sive and massless spinor field. The values of W are

Fig. 2. Evolution of the corresponding Hubble parameter H(t)

and corrsponds to differnt values of k as in Fig. 1

Fig. 3. Evolution of the FRW Universe (scale factor a(t)) in

presence of a radiation given by a massive spinor field. The

blue solid, red dash-dot and black long dash lines stand for

k = +1, 0, −1, respectively

taken to be 1/2, −1/2 and −1 describing the radiation,
quintessence and cosmological constant, respectively.
For simplicity we set S0 = 1, G = 1, λ = 0.5 here and
in the cases to follow. We also set m = 0 for a massless
and m = 1 for a massive spinor field.

In Fig. 1 we have illustrated the evolution of
the Universe filled with radiation, given by a massless
spinor field, while Fig. 2 shows the evolution of the
Hubble parameter corresponding to the case in ques-

54



ЖЭТФ, том 167, вып. 1, 2025 Spinor Field in FLRW Cosmology...

Fig. 4. Evolution of the corresponding Hubble parameter H(t)

Fig. 5. Evolution of the FRW Universe (scale factor a(t)) in

presence of a modified Chaplygin gas given by a massless spinor

field. As one sees, independent to the value of k in this case

the universe expand rapidly

tion. Figs. 3 and 4 describes the evolution of the Uni-
verse filled with radiation and the corresponding Hub-
ble parameter in case of a massive spinor field. In the
figures blue solid line stands for a closed universe given
by k = 1, red dash-dot line stands for a flat universe
with k = 0 and black long dash line stands for an open
universe with k = −1.

We have also considered the case with the
spinor field nonlinearity describing a quintessence
(W = −1/2) and cosmological constant (W = −1).

Fig. 6. Evolution of the corresponding Hubble parameter H(t)

Both massive and massless spinor fields are taken into
account. Since in both cases the energy density is less
than the critical density, independent to the value of k
we have only open type of universe. The behavior of
the evolution is qualitatively same as that of in case of
a modified Chapligin gas. The corresponding figures
will be similar to those in Figs. 5 and 6, only the rate
of expansion being much slower.

3.2. Chaplygin gas

In order to combine two different physical concepts
such as dark matter and dark energy, and thus reduce
the two physical parameters in one, a rather exotic
equation of state was proposed in [28] which was further
generalized in the works [29, 30]. Generalized Chaply-
gin gas model is given by the EoS

pch = −A/εαch, (45)

where A is a positive constant and 0 < α ≤ 1.

It was shown that such kind of dark energy can be
modeled by the massless spinor field with the nonlin-
earity [9] inserting (35) into (45)

F (S) =
(
A+ λS1+α

)1/(1+α)
. (46)

We have solved (40) numerically for the nonlinear
term given by (46). We consider only massless spinor
field setting m = 0. The parameters S0, G and λ were
taken as in previous case. We have also set A = 1/2

and α = 1/3.
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Fig. 7. Evolution of the FRW Universe (scale factor a(t) in

presence of a modified quintessence given by a massless spinor

field. In case of k = +1 there occurs a periodic solution,

whereas for k = 0 or k = −1, we have Big Crunch like solutions

Fig. 8. Evolution of the corresponding Hubble parameter H(t)

As in case of quintessence and cosmological con-
stant, the evolution of the universe filled with Chap-
lygin gas and corresponding behavior of the Hubble
parameter are qualitatively same as in case of a modi-
fied Chaplygin gas which are illustrated in Figs. 5 and
6. The expansion rate in this case is higher than the
previous case but slower than in the case to follow.

Fig. 9. Evolution of the FRW Universe (scale factor a(t)) in

presence of a modified quintessence given by a massive spinor

field. Unlike massless spinor field, in this case there is no pe-

riodic solutions for the given value of problem parameters

Fig. 10. Evolution of the corresponding Hubble parameterH(t)

3.3. Modified Chaplygin gas

Though the dark energy and the dark matter act in
a completely different way, many researchers suppose
that they are different manifestations of a single entity.
Following such an idea a modified Chaplygin gas was
introduced in [31] and was further developed in [32].
Corresponding EoS takes the form
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p = Wε−A/εα, (47)

with W being a constant, A > 0 and 0 ≤ α ≤ 1.
Inserting (35) into (47) the modified Chaplygin gas

can be generated by a massless spinor field with the
nonlinearity given by [9]

F (S) =

[
A

1 +W
+ λS(1+α)(1+W )

]1/(1+α)

. (48)

In fact, mathematically it is a combination of
quintessence and Chaplygin gas. We have solved (40)
numerically for the nonlinear term given by (48). Since
we consider only massless spinor field, we set m = 0.
For simplicity we set S0, G, λ, A, and α as in previous
cases. Beside that we set W = −1/2.

In Figs. 5 and 6 we have illustrated the evolution
of the universe and corresponding Hubble parameter
when the Universe is filled with nonlinear spinor field
simulating a modified Chaplygin gas.

3.4. Modified quintessence

A modified Quintessence was proposed in order to
avoid eternal acceleration of the universe. In some
cases it gives cyclic universe that pops up from a Big
Bang singularity, expands to some maximum value and
then decreases and finally ends in Big Crunch. In some
cases it might be periodic without singularity. A spinor
description of a modified quintessence was proposed
in [23]

p = W (ε− εcr), W ∈ (−1, 0), (49)

with εcr being some critical energy density. The model
gives rise to cyclic or oscillatory universe. Setting
εcr = 0 one obtains ordinary quintessence. As one sees
from (49), the pressure is negative as long as ε > εcr.
Since with the expansion of the universe the energy
density decreases, at some moment of time ε becomes
less than εcr, i.e., ε < εcr. This leads to the positive
pressure and the contraction of the universe. It can be
shown that a modified quintessence can be modeled by
a spinor field nonlinearity inserting (35) into (49)

F (S) = λS1+W +
W

1 +W
εcr. (50)

We solve the system (40) for the values of parameters
as in case of quintessence. For critical density we set
εcr = 1.

In Figs. 7 and 8 we have illustrated the evolu-
tion of the universe and corresponding Hubble param-
eter when the universe is filled with nonlinear massless

spinor field simulating a modified quintessence. The
corresponding cases with massive spinor field are illus-
trated in Figs. 9 and 10

In the figures, evolution of Hubble parameter H is
drawn for a much smaller time interval than the scale
factor a. It is just for technical reason. For example, if
in Figs. 3 and 4 we use interval 30 for both a and H ,
as we see from Fig.4 Hubble parameter after crossing
mark 5 it becomes almost zero, thus giving rise to a
visually ugly picture. Whereas, setting interval 5 for
both, we have a on rising phase for all three values of k
[cf. Fig. 3]. These two figures correspond to the same
values of problem parameter, only for good visual pic-
tures we have drawn them for different intervals. The
same can be told for all other cases.

4. CONCLUSION

Within the scope of a spherically symmetric FLRW
model we have studied the role of a nonlinear spinor
field in the evolution of the universe. It is found
that in this case the spinor field possesses nontrivial
non-diagonal components of the EMT. Since the Ein-
stein tensor in this case is diagonal, this fact imposes
some restrictions on the components of spinor field:
A0 = 0, A3 = 0 and A1 ∝ A2. Corresponding equa-
tions are solved. It is shown that if the spinor field
nonlinearity repesents ordinay matter such as radia-
tion, the factor k plays decisive role giving rise to close,
flat or open universe depending on its positive, trivial or
negative values. It is also shown that in this case spinor
mass influences the result quantatively. If the spinor
feild nonlinearity generates a dark energy we have only
rapidly expanding universe independent to the value of
k. Finally in case of a modified quintessence the model
gives rise to as oscillating universe. Depending on the
value of k and spinor mass msp there might be periodic
solutions or the one that ends in Big Crunch.
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