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BKT TRANSITION IN PHYLLOTAXIS
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We explore a two-parameter renormalization group (RG) within the framework of the «energetic approach»

introduced by L. Levitov, for the phyllotaxis model. Our focus lies on an equilibrium distribution of strongly

repulsive particles situated on the surface of a finite cylinder. We investigate how these particles redistribute as

the cylinder undergoes compression along its axis. Specifically, we construct the modular-invariant β-function

for the system, which is explicitly expressed in terms of the Dedekind η-function. Utilizing this β-function, we

derive equations that describe the RG flow near the bifurcation points, which mark the boundaries between

different lattice configurations. By analyzing the structure of these RG equations, we assert the emergence of

Berezinskii – Kosterlitz – Thouless transitions under significant cylinder compression.
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1. INTRODUCTION

Amazing connection of cell packing with Fibonacci

sequences, known as phyllotaxis [1] was observed a long

time ago in the works of naturalists and remains till

now one of the most known manifestations of number

theory in natural science. The generic description of

growing plants based on symmetry arguments allowed

researchers to uncover the role of Farey sequences in the

plant’s structure formation (see, for example, [2–4]),

however, the question why the nature selects the Fi-

bonacci sequence, among other possible Farey ones,

was hidden until modern time. A tantalizing answer

to this question has been given by L. Levitov in 1990

in [5], who proposed an «energetic» approach to the

phyllotaxis, suggesting that the development of a plant

is connected with an effective motion along the opti-

mal path on a Riemann surface associated with the

energetic relief of growing tissue.

The energetic mechanism suggested in [5] was ap-

plied later in [6] to the investigation of the geometry

of flux lattices pinned by layered superconductors. It

has been shown that under the variation of a mag-

netic field, the structure of the flux lattice can un-

dergo a sequence of rearrangements encoded by the

* E-mail: sergei.nechaev@gmail.com

Farey numbers. However, lattices emerging in sequen-

tial rearrangements are characterized by the specific

subsequence of the Farey set, namely, by the Fibonacci

numbers. Very illuminating experiments have been

provided in [7] for lattice formed by drops in rotat-

ing liquid, and in [8] for the equilibrium structure of a

«magnetic cactus».

The general classification of RG flows rhymes with

the development of bifurcations («catastrophes») over

time in the theory of dynamical systems — see, for in-

stance [9]. In the catastrophe theory there are focuses,

saddles, limits cycles and other attributes of the sin-

gularity theory, with corresponding fixed points, RG

cycles and more exotic RG behavior. For instance, re-

cently the RG counterparts of homoclinic orbits in the

theory of dynamical systems have been found in the

field theory [10], they also provide examples of chaotic

RG flows [11]. The phenomenon of incommensurability

is also known in the theory of dynamical systems. Fol-

lowing the same logic, one could expect the existence

of RG counterpart of the incommensurability. Indeed,

the RG approach was successful in describing the in-

commensurable patterns in a Harper equation for the

electron in a crystal in presence of a magnetic field

[12, 13] where it was argued that the tunneling in the

phase space is the crucial ingredient.

In an overwhelming majority of physical systems

[14, 15] the inmommesurability manifests itself in an

emergence of a «Devil’s staircase». The geometric
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signature of the incommensurability is the Riemann –

Thomae (RT) function which emerges in spectra of

sparse systems of various physical origin. Meanwhile,

the Riemann – Thomae function also appears as a prob-

ability distribution in a plethora of fundamental prob-

lems, such as stability diagram in fractional quantum

Hall effect [16,17], interactions of non-relativistic ideal

anyons with rational statistics in the «magnetic gauge»

approach [18], quantum 1/f noise and Frenel-Landau

shift [19], distribution of quotients of reads in DNA

sequencing experiment [20], frequency of specific sub-

graphs counting in the protein-protein network of a

Drosophilla [21]. Though the degree of similarity with

the original RT function could vary, and experimental

profiles may drastically depend on the peculiarities of

each particular physical system, a general probabilistic

scheme resulting in emergence of the fractal hierarchi-

cal distribution can be considered as the manifestation

of number-theoretic laws in nature.

Often two real parameters of a 2D RG flow are com-

bined into the single complex parameter, τ , which can

be interpreted as the modulus of the complex structure

for an auxiliary elliptic curve. The familiar examples

are: the Anderson localization problem with the time

symmetry breaking (TSB) term [22], the integer quan-

tum Hall effect (IQHE) [23, 24], and the Yang-Mills

theory with the TSB θ-term [25,26]. In all these exam-

ples the real part of the complex parameter is the TSB

parameter. We suggest a bit more general perspective

and propose to consider the following generic complex

(modular) parameter:

z = [topological term] + i [disorder], (1)

hence we unite the topology and the disorder in the RG

flow. At any fixed value z = x+ iy the partition func-

tions of considered systems fully enjoy symmetries of

the SL(2, Z) modular group and hence are the modular

functions. However when x and/or y run over time and

depend on some scale, µ, the situation is more subtle.

It general, the RG flow involves two β-functions and is

described by the set of equations

dx

d lnµ
= βx(x, y);

dy

d lnµ
= βy(x, y) (2)

Typically, the disorder term enjoys both the pertur-

bative and non-perturbative remormalizations, while

the topological parameter is renormalized only non-

perturbatively. There are some known patterns of β-

functions with such properties:

1. For the Berezinskii – Kosterlitz – Thouless (BKT)

transition one has

βu = −c1uv; βv = −c2u2. (3)

2. For the «Russian Doll» model which is the toy

example of the system with the cyclic RG flows (see,

[27] for review), the RG flow is discrete

gN+1 = gN +
1

N
(g2N + θ2N ); θN+1 = θN . (4)

We focus our attention on a specific limit of RG

flows when the non-perturbative renormalization com-

ing from instanton-like contributions dominates — see,

for example, [13]. This happens in all examples when

y = Im z → 0 which means that we are looking at the

limit of a weak disorder in some frame, and the modu-

lar parameter is mainly governed by the «winding-like»

term. The details are model-dependent, however in all

cases this term has one and the same physical meaning:

it serves for counting topological defects.

One possible pattern behind the Riemann – Thomae

function and the Devil’s staircase is as follows. Con-

sider a physical problem, for example the fractional

quantum Hall effect (FQHE), and push the system into

the particular limit in the parameter space. For FQHE

this is the so-called «thin torus limit» — see for ex-

ample [17]. The system hosts some defects, and in the

limit under consideration defects form a lattice which is

a Wigner crystal in the thin torus limit of FQHE. Con-

sider now the propagation of a probe particle through

the sample which can be investigated, for instance, by

analyzing its spectral density. The modular SL(2, Z)

group acts in the parameter space of this system. The

imaginary part Im z of the modular parameter τ gets

identified with some function of disorder, while the real

part Re z corresponds to the chemical potential for

the topological charge relevant for the studied prob-

lem. The motion of the probe particle in the crystal

of defects can be mapped onto the motion in the fun-

damental domain of SL(2, Z) and the rearrangements

of the lattice can be treated by analyzing the RG flow

in the vicinity of transition points which are identified

with points of lattice bifurcations. Generally speaking,

from the probe particle perspective, the rearrangement

of the lattice can be studied by varying the chemical

potential of defects (or of their number).

The paper is organized as follows: in Section 2 we

define the model, discuss the modular properties of

the potential acting between particles, construct the

β-function and show explicitly its scale-invariant struc-

ture; in Section 3 we derive the RG flow equations in

the vicinity of critical (saddle) points and demonstrate
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the convergence of these equations at small y to the

ones describing the BKT transition in XY model; fi-

nally, in Section 4 we summarize the obtained results

and in addition provide arguments showing that the

variable y besides its geometrical sense, can be related

to the disorder in a simple spectral problem.

2. PHYLLOTAXIS, MODULAR INVARIANCE
AND β-FUNCTION

2.1. The model

We consider, following L. Levitov [5], the model sys-

tem ofN strongly repulsive particles disposed and equi-

librated at the surface of a cylinder of fixed diameter,

D, and height, H and look at the rearrangement of

these particles when the cylinder is compressed along

its height under the condition that N and D remain

unchanged — see fig.1 a. This model can be regarded

as a kind of modification of a famous Tammes prob-

lem dealt with a packing a given number of points on

the surface of a sphere such that the shortest distance

between points is maximized. The Tammes problem

is known in plant’s geometry since 1930 [28] and it it-

self can be viewed as a particular case of the generalized

Thomson problem [29] of minimizing the total Coulomb

energy of charged particles distributed on the surface

of a sphere. The advantage and novelty of L. Levi-

tov’s phyllotaxis model with respect to the Thomson-

Tammes system is two-fold: (a) cylindrical lattice is

described by two parameters (D and H) and one can

change them independently, and (b) the equilibrium

lattices on the cylinder are transformed under the ac-

tion of the group SL(2, Z), which essentially simpli-

fies the consideration of rearrangement of lattices when

changing D and/or H .

At the continuous compression of the cylinder, for

each height, particles form a triangular «Abrikosov»

lattice with minimal energy [30]. Different lattice

topologies correspond to local minima of the system’s

energy U(x, y) and are parametrized by the modu-

lar parameter, z = x + iy, where x = f1(D,H),

y = f2(H) and f1 and f2 are some functions to be de-

fined below. The minima of the potential U(z) are clus-

tered in nested basins: larger basins consist of smaller

basins, each of these consists of even smaller ones, etc.

The basins of local energy minima are separated by

a hierarchically arranged set of barriers: large basins

are separated by high barriers, and smaller basins

within each larger one are separated by lower barriers.

The geometry which fixes taxonomic (i.e. hierarchi-
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Fig. 1. a — Repulsive points distributed on the surface of the

cylinder form a lattice, characterized by the parameter α, with

a minimal energy. The lattice is rearranged when the cylin-

der is compressed along its vertical axis. b — Dependence

U(x, y = const) defined in (13) for the compressed lattice

(y = 10−3 ≪ 1 and β = 1) as a function of x

cal) tree-like relationships between elements is called

«ultrametric» [31].

Here we provide an explicit construction of the en-

ergetic relief in a phase space of all possible patterns of

compressed lattices and demonstrate that the ground

state is related to the deepest valley in Γ. The lat-

tice rearrangement caused by the cylinder compression

along its axis is associated with the RG flow on the

manifold Γ, which shares the modular properties. At

each height, H , particles on the cylindrical surface form

a lattice with a minimal energy. For strongly squeezed

lattices (y → 0) the corresponding energy, U(x, y), has

a sharp maximum corresponding to the barrier at every

rational point, x = m/n as it is shown in Fig. 1 b. One

sees that U(x, y) demonstrates the hierarchical behav-

9 ЖЭТФ, вып. 2 (8)
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ior, which should be understood as follows: the transi-

tions between two arbitrary local minima at x1 and x2,

are determined by the passage over the highest barrier

Umax(x1, x2), separating the points x1 and x2.

The outline of our upcoming discussion is as follows.

We begin with the derivation of the potential U(x, y)

separating valleys between different equilibrium con-

figurations of particles on the cylinder. Taking into

account the invariance of the potential U(z) under the

action of the group SL(2, Z), we show that U(z) plays a

role of a β-function of the system. The explicit form of

the β-function allows us to derive the RG equations in

the vicinity of saddle points of the potential U(z) and

solve these equations in a general form at any x and

y. Analyzing the structure of obtained RG equations

we demonstrate that they tend to the RG equations of

XY -model describing the BKT transition in a strong

compression limit (i.e. when y → 0).

2.2. The potential

Any particle on the cylinder can be parameterized

by a pair (hn, αn {mod 2π}), where n ∈ N, subject

that all particles are arranged according to monotonic

growth of the height, hn. Projecting the cylindrical

surface conformally onto the plane, we get new coordi-

nates, rn,m(x, y), of particles on the planar lattice,

rn,m(x, y) =

(
m+ nx√

y
, n
√
y

)
, {m,n} ∈ Z2, (5)

where the connection between cylindrical and planar

lattices is set by the following change of variables:

x =
α

2π
, y =

h

2π
, y > 0. (6)

Strong repulsive potential acting between particles can

be approximated by the conformally-invariant 1/r2 po-

tential. Consider two arbitrary particles one of which

is located at the origin of the (x, y)-plane and the sec-

ond — at some point (xm,n, ym,n). Suppose that the

potential U(rm,n) has the following form:

U(rm,n) =
q

r2m,n
, (7)

where q > 0 is some arbitrary parameter having sense

of a charge. The energy of a whole lattice reads

U(x, y) =
∑

{m,n}∈Z2\{0,0}
U(xm,n, ym,n) =

=
∑

{m,n}∈Z2\{0,0}

q

r2m,n
. (8)

Substituting (5) into (7), we get

U(x, y) =
∑

{m,n}∈Z2\{0,0}

qy

(m+ nx)2 + y2n2
. (9)

Recall now the definition of the non-holomorphic

Eisenstein series, E(z, s), [32]:

E(z, s) =
∑

{m,n}∈Z2\{0,0}

ys

|nz +m|2s , (10)

where z = x+ iy and E(z, s) is a function of z = x+ iy

and is defined in the upper half-plane y > 0 for all

Re (s) > 1.

The non-holomorphic Eisenstein series of weight 0

and level 1 can be analytically continued to the whole

complex s-plane with one simple pole at s = 1. Notably

E(z, s), as function of z, is the SL(2,Z)–automorphic

solution of the hyperbolic Laplace equation:

− y2
(
∂2

∂x2
+

∂2

∂y2

)
E(x, y, s) =

= s(1− s) E(x, y, s). (11)

The residue of E(z, s) at s = 1 is known as the first

Kronecker limit formula [33–35]. Explicitly, it reads

at s→ 1

E(z, s→ 1) =
π

s− 1
+

+ 2π
(
γ + ln 2− ln

(
y1/2|η(z)|2

))
+O(s − 1), (12)

where γ is the Euler constant and η(z) is the Dedekind

η-function. Equation (12) establishes the impor-

tant connection between the Eisenstein series and the

Dedekind η-function, which we exploit below. Namely,

comparing (9) to (10), we conclude that

U(x, y) ≈ qE(x + iy, s→ 1)→

→ 4πq ln
(
y1/4|η(x+ iy)|

)
. (13)

Let us remind that the Dedekind η-function is de-

fined as follows:

η(z) = eπiz/12
∞∏

n=0

(
1− e2πinz

)
. (14)

The argument z = x+iy is called the modular parame-

ter, and η(z) is defined for all y > 0. The function η(z)

is invariant with respect to the action of the modular

group SL(2,Z):

η(z + 1) = eπiz/12 η(z),

η

(
−1

z

)
=
√
−i η(z).

(15)
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In general,

η

(
az + b

cz + d

)
= ω(a, b, c, d)

√
cz + d η(z), (16)

where ad− bc = 1 and ω(a, b, c, d) is a 24th degree root

of unity [36].

2.3. The β-function

The construction of the β-function implies find-

ing the function which is invariant with respect to

RG transformations. The natural candidate for the

β-function is the potential U(x, y). To see the self-

similarity of U(x, y) along the RG flow (i.e. at y chang-

ing from +∞ down to 0), we consider the function

U(x, y|D1) in some initial domain D1 and compare it

with its own part U(x, y|D2) in a smaller domain D2.

It is always possible to find a conformal transform

[(x, y) ∈ D2]→ [(x′, y′) ∈ D1]

constructed on the basis of generators of SL(2, Z) such

that

U(x′, y′|D2)→ U(x, y|D2).

Below we demonstrate the corresponding construction

on a particular example.

In Fig. 2 a we provide the generic 3D view of

the function U(x, y|D1) (at q = 1) in the domain

D1 = (0 < x < 1, 10−2 < y < 1). All local maxima,

(xj , yj) of the relief U(x, y) depicted by white points,

lie at the level U(xj , yj) ≈ −3.248. For better visual-

ization only the part of the function U(x, y) bounded

from below, namely U(x, y) > −3.8 is drawn in Fig. 2

and in Fig. 3 in all panels. Coordinates of particular

local maxima shown in Fig. 2 are

O
(

1
2 ,

√
3
2

)
, A

(
1
2 ,

1
2
√
3

)
,

B
(

9
14 ,

√
3

14

)
, C

(
23
38 ,

√
3

38

)
.

In Fig. 2 b, we depict a number of fundamental do-

mains of the group SL(2, Z) together with exact loca-

tions of their centers (points z0, z1, z2, z3, z4) which (up

to the shift x→ x+1/2) exactly match the local max-

ima of the relief U(x, y) in Fig. 2 a. We will return to

the determination of coordinates of these points at the

end of this subsection.

The contour plot of the function U(x, y|D1) in the

domain D1 is shown in Fig. 3 a. To demonstrate the

scale invariance (the self-similarity) of U(x, y) ≡ U(z),

where z = x+ iy, we select a new (smaller) region, D2,

designated by the yellow square in Fig. 3 a and seek for

a conformal transform z′ = f(z) which maps U(z|D2)

onto U(z′|D1) as it is shown in Fig. 3 a, b.

( )b

A

O

B
C

z
0

h
1

h
2

h
3

z
2

z
3

x0
z

4

z
1

y

h
3

(a)

Fig. 2. a — 3D view of the function U(x, y|D1) in the domain

D1 = (0 < x < 1, 0 < y < 1). b — For better visualization

only the part of the function U(x, y|D1) lying in the interval

U(x, y|D1) > −3.8 is plotted

For domains D1 = (0 < x < 1, 10−2 < y < 1)

and D2 =
(
xC − 0.1 < x < xC + 0.1, 10−3 < y < 0.2

)
,

where xC = 23
38 is the x-coordinate of the point

C
(

23
38 ,

√
3

38

)
, the mapping D2 → D1 is realized via the

conformal transform

z′ = f(z) =
z − 1

4z − 3
. (17)

The contour plot of the function U(x′, y′) given by (13)

is presented in Fig. 3 b. The variables (x′, y′) are defined

by the folowing equations:





x′ = Re
z − 1

4z − 3
=

3− 7x+ 4x2 + 4y2

9− 24x+ 16x2 + 16y2
,

y′ = Im
z − 1

4z − 3
=

y

9− 24x+ 16x2 + 16y2
.

(18)
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Fig. 3. a — Contour plot of the function U(x, y|D1) in the do-

main D1 = (0 < x < 1, 0 < y < 1). The function U(x, y|D2)

in the domain D2 shown by yellow square in the panel (a)

is conformally mapped by the function f(z) (see (17)) onto

U(x y|D1) in the domain D1 as it is shown in the panel (b).

The corresponding mapping demonstrates the scale invariance

of U(x, y)

The varables (x, y) lie in

D2 =

(
23

38
− 0.1 < x <

23

38
+ 0.1, 10−3 < y < 0.2

)
.

As one sees, the plot in Fig. 3 b exactly coin-

cides with the one in Fig. 3 a in the whole do-

main D1 = (0 < x < 1, 0 < y < 1). Sub-

stituting B
(
x = 9

14 , y =
√
3

14

)
into (18) we get

B′
(
x′ = 1

2 , y
′ = 1

2
√
3

)
and for C

(
x = 23

38 , y =
√
3

38

)

we get C′
(
x′ = 9

14 , y
′ =

√
3

14

)
— see Fig. 3. So, we can

conclude that the domain D2 is expanded onto the

domain D1 such that the structure of the potential

U(x, y) remains completely scale-invariant.

Generically all local maxima (points z1, z2, ... in

Fig. 2 b can be constructed via successive reflections of

the fundamental domain of the free group Γ2 as it is

shown in Fig. 2 b. The corresponding Cayley graph is

a 3-branching Cayley tree. Recall that the 3-branching

Cayley tree can also be viewed as the Cayley graph

of the group Λ, which has the free product structure:

Λ ∼ Z2 ⊗ Z2 ⊗ Z2, where Z2 is the cyclic group of

second order. The matrix representation of generators

h1, h2, h3 of the group Λ is well known:

h1=




1 1

0 −1


; h2=




1 −1

0 −1


; h3=




0 1
2

2 0


.

(19)

Taking the point, z0 =
√
3
2 i, we can find its image, zN ,

after N recursive applications of generators from the

set {h1, h2, h3} according to the following formula:

zN =
1

2
+





aN z̄0 + bN
cN z̄0 + dN

for N = 2k − 1,

aNz0 + bN
cNz0 + dN

for N = 2k,

(20)

where z̄ means complex conjugation of z, k = 1, 2, ...,

and {aN , bN , cN , dN} are the coefficients of the matrix

(
aN bN

cN dN

)
=

N terms︷ ︸︸ ︷
h3h1h2h3h1h2... (21)

Using (19)–(21) we reproduce the coordinates of the

points A,B,C in Fig. 2. The sequence which converges

to the Golden ratio is as follows:

(
a3M b3M

c3M d3M

)
=

N terms︷ ︸︸ ︷
(h3h1h2) ... (h3h1h2) =

= (h3h1h2)
3M

, (22)

where N = 3M , M = 1, 2, 3, ... The limiting value of

x∞ = Re zN→∞ is the Golden ratio:

z∞ =
1

2
+

1

2
lim

M→∞

a3Mc3M + b3Md3M
c23M + d23M

=

=
1

2

(√
5− 1

)
≈ 0.618034... (23)

The sequence of «zigzag» reflections is encoded in the

continued fraction expansion of the Golden ratio, φ:

φ =
1

2
(
√
5− 1) =

1

1 +
1

1 +
1

1 +
1

1 + · · ·

(24)
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where interlacing odd and even «1» correspond to the

left and right turns of a zigzag path in Fig. 2 b.

3. RG EQUATIONS AND A SIGNATURE OF
BKT TRANSITIONS

Understanding RG flow as adiabatic particle’s dy-

namics (APD) in a complex potential is very useful in

studying the behavior of RG flows in the vicinity of crit-

ical points which can be regarded as bifurcation points

in the APD problem. Here we derive the corresponding

RG equation for the potential

U(x, y) = 4πq ln
(
y1/4|η(x+ iy)|

)

defined in (13). The function U(z), where z = x + iy,

plays the role of a β-function which remains invariant

under the action of the group SL(2, Z) in particular

when y tends to 0. Recall, that in the phyllotaxis

problem changing y from = +∞ down to 0 can be

interpreted as the re-distribution of repulsive particles

(equilibrated at the surface of the cylinder) when the

cylinder is squeezed along its axis.

The contour plot of U(x, y) for q = 1 in the region

(0.01 < x < 0.99, −0.35 < y < −0.32) is shown in

Fig. 4 a. By (xs(k), ys(k)) we denote the coordinates of

the saddle points (k = 1, 2, ...), they are shown in cyan

in Fig. 4 and have the following generic expression:

xs(k) =
n1m1 + n2m2

m2
1 +m2

2

,

ys =
1

m2
1 +m2

2

,
(25)

where (m1,m2, n1, n2) are some integers. In particu-

lar, in Fig. 4 a we have depicted the following points

constituting the Fibonacci sequence:

(xs(1), ys(1)) =

(
1

2
,
1

2

)
,

(xs(2), ys(2)) =

(
3

5
,
1

5

)
,

(xs(3), ys(3)) =

(
8

13
,
1

13

)
,

(xs(4), ys(4)) =

(
21

34
,
1

34

)
, etc.

From the topological point of view there is no difference

between all these saddle points, however the orientation

of saddles with respect to the x-axis is different and the

geodesic (dashed cyan curve in Fig. 4 a, parameterized

by the equation

y(x) =

√
5

4
−
(
x+

1

2

)2

,

crosses saddle points with different k at different an-

gles. The coordinates (xs(k), ys(k)) of saddles which

constitute the Fibonacci series are

(
xs(k), ys(k)

)
=

=

(
G2k

1 −G2k
2

G2k+1
1 −G2k+1

2

,

√
5

G2k+1
1 −G2k+1

2

)
,

k = 0, 1, 2, ...,∞, (26)

where

G1 =
1

2
(1 +

√
5), G2 =

1

2
(1−

√
5).

To proceed, we expand the potential U(x, y) in the

vicinity of a saddle point (xs, ys) and find the equa-

tion describing the corresponding surface U(x, y) near

(xs, ys) ≡ (xs(k), ys(k) (to shorten forthcoming expres-

sions we suppress the index k). The Taylor expansion

of U(x, y) up to the second order reads

U(x− xs, y − ys) ≈ U(xs, ys) + Uxx (x − xs)2+
+ 2Uxy (x− xs)(y − ys) + Uyy (y − ys)2, (27)

where the derivatives Uxx, Uxy = Uyx, and Uyy are

taken at the point (xs, ys). The first derivatives in

the Taylor expansion (27) are nullified at the point

(xs, ys), and the condition UxxUyy − U2
xy < 0 ensures

that the point (xs, ys) is actually a saddle. Note also

that the term, U(xs, ys) ≡ U(xs(k), ys(k)), gives one

and the same constant for any k and therefore can be

suppressed. Define now the coefficients

Uxx = a1, Ux,y = a2, Uyy = a3

at every saddle point. These coefficients,

a1 = a1(k), a2 = a2(k), a3 = a3(k),

depend on k, where k = 1, ...,∞ in (26).

Derive now the RG flow in the complex z = x+ iy

plane in the vicinity of saddle points (xs, ys) of the

surface U(x, y) which plays the role of the β-function,

as it has been shown in Section 2.3. Introducing the
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Fig. 4. Contour plot of the Riemann surfaceU(x, y)=ln
(

y1/4|η(x+iy)|
)

in the region (0.01<x<0.99, −0.35<y<−0.32) (a).

White points are the same as in Fig. 3, while cyan points designate the bifurcation points of the RG flow, and the dashed arc is

the open geodesics passing through all saddles (xs(k), ys(k)) constituting the Fibonacci series (k = 0, ...,∞) — see (26). Plots

of the surface U(x, y) in vicinity of three first saddles (xs(k), ys(k)) for k = 1, 2, 3 (b–d)

coordinates u = x − xs and v = y − ys and separat-

ing real and imaginary parts, we may write down the

following first-order nonlinear differential equations de-

scribing the RG flow in the complex plane w = u+ iv:

du

d lnµ
= a1u

2 − a3v2,

dv

d lnµ
= 2a2 uv,

(28)

where µ is the RG time.

Equations (28) imply that the RG flow near the

bifurcation points is fully determined by the topology

of the β-function U(x, y). It is worth mentioning that

our construction is consistent with ideas expressed in

works [37–39]. In particular, in [37] the connection be-

tween the RG flows and the topological structure of

the β-function has been discussed in the context of

CFT/ADS2 duality, while in [38] and in [39] the equa-

tions for RG flows ideologically similar to (28) have

been derived to describe the behavior of RG flows in the

FQHE in the vicinity of critical points. The emergence

of BKT fixed points in similar context has been also

discussed in [40] for layered high-Tc superconductors.

Before proceeding with the derivation of the solu-

tion of (28), let us formulate the main idea behind our

computations. Comparing the orientation of the (u, v)

coordinate system with respect to (x, y) one for differ-

ent k (see Fig. 4 b, c, d), we can note that with increas-

ing k the (u, v)-system is turning in such a way that

at k →∞ it coincides with the (x, y) one. Computing

explicitly the shape U(x, y) in vicinity of the saddle

point (xs(k), ys(k)) for k = 1, 2, 3, we see that with

k → ∞ the coefficient a1 = Uxx tends to zero, while

the coefficients a2 = Uy and a3 = Uyy remain finite. To

demonstrate this, we have depicted in Fig. 4 b, c, d the

potentials U(x, y) in vicinity of first three terms of the

Fibonacci series for k = 1, 2, 3:

U1(u, v) = −3.31− 0.92u2−
−0.92v2 + 1.85uv,

U2(u, v) = −3.31 + 2.60u2+

+23.39v2 − 15.58uv,

U3(u, v) = −3.31− 1.25u2−
−78.65v2 + 19.77uv.

(29)

One sees from (29) that with increasing k the coeffi-

cient a1(k) in front of the term u2 relatively decreases.

Returning to (28) we see that when the coefficient a1 is

nullified, the corresponding equation coincides with the

equation describing the RG flow in XY model near the

BKT transition point. Thus we expect that at y → 0

which means strong compression of the fillotaxis lattice

the corresponding lattice rearrangements (bifurcations)

are closer and closer to the BKT transition.

Let us return now to (28) and provide its generic so-

lution for arbitrary values a1, a2, a3. Dividing the first

equation of (28) by the second one we can convert the

system (28) into the following single equation

du

dv
=

a1
2a2

u

v
− a3

2a2

v

u
. (30)
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Introducing the new function h and writing u = hv,

we arrive at the equation in which the variables can be

separated:

v
dh

dv
=

(
a1
2a2
− 1

)
h− a3

2a2
h−1. (31)

Solving (30) we get

a2
a1 − 2a2

ln
(
a3 − (a1 − 2a2)h

2
)
= ln(Gv), (32)

where G remains invariant along the RG flow (i. e. G

does not depend on the scale µ). Plugging the function

h = u/v in (32) and denoting Ga1/a2−2 by ∆, we have

a3v
2 − va1/a2∆ = (a1 − 2a2)u

2. (33)

Substituting u(v) into the second equation in (28) and

performing the integration, we obtain an non-explicit

solution for v(µ)

√
a1 − 2a2

a1

√
a3v2 −∆v

a1
a2

×

×
(
(a1 − 2a2) a3v

2

√

1− ∆v
a1
a2

−2

a3
×

×2 F1

(
1

2
,

a2
a1 − 2a2

;
a1 − a2
a1 − 2a2

;
v

a1
a2

−2
∆

a3

)
+

+ 2a2

(
a3v

2 −∆v
a1
a2

))
= lnµ. (34)

Despite (34) looks rather complicated, it is essen-

tially simplified in the limit of small y. Substituting

a1 = 0 into (31) we get the set of equations describing

the RG flow in the XY -model in vicinity of the BKT

transition. The critical scale (the correlation length)

near the transition point is defined by the condition

√
−2a2∆ lnµc ∼ 1

which implies the BKT-like dependence of the correla-

tion length, µc, on ∆:

µc ∼ e1/
√
−2a2∆. (35)

One can see from (29) that the coefficient a2 in front of

the uv term periodically changes the sign. So, one can

expect the signature of the BKT-like transition (35)

when a2 < 0.

The physical meaning of encountered critical behav-

ior could have the following interpretation. When the

cylinder is squeezed along its principal axis, the corre-

sponding lattice of repulsive particles experiences a set

of successive rearrangements («bifurcations»). Each bi-

furcation is a collective effect that is accompanied by

the melting of the lattice. Our analysis permits us to

conjecture that at least some of these bifurcations in

the strong compression limit can be associated with

the Berezinsky – Kosterliz – Thouless transtion.

4. DISCUSSION

The main result of our work is as follows: we have

provided arguments in support of the conjecture that

bifurcations of the lattice formed by strongly repulsive

particles equilibrated at the surface of a finite cylinder

are the points of phase transitions in the thermody-

namic limit. At strong cylinder compression the equa-

tions describing RG flow near these transition points

converge towards describing the Berezinskii-Kosterlitz-

Thouless behavior in the XY model. The numerical

check of this conjecture is highly demanded since our

analysis is not restricted to the specific model of phyl-

lotaxis. Relying on a general topology of the β-function

in the vicinity of transition points one could expect

the signature of BKT transition in various physical

systems such as: (i) layered high-Tc superconductors

[40], possessing the Fractional Quantum Hall Transi-

tion (FQHT) at small disorder (small σxx), (ii) 1D Hub-

bard model on a ring [41].

The main ingredient in our construction is the lat-

tice potential U(x, y) defined in (13) which is invari-

ant under the modular transformations and is scale-

invariant as it is shown in Section 2.3. The potential

U(x) exhibits a hierarchical structure, with its min-

ima forming clusters of nested basins. Larger basins

encompass smaller basins, and this nested pattern con-

tinues with each smaller basin containing even smaller

ones. The basins hosting local energy minima are

delineated by a hierarchical arrangement of barriers,

where larger basins are separated by high barriers, and

smaller basins within each larger one are divided by

lower barriers. The geometric structure that establishes

taxonomic, relationships between these elements is re-

ferred to as «ultrametric» [31]. The self-similarity of

the function U(x|y) is evident from Fig. 5, where we

have plotted a set of curves U(x) at various values of

y. To enhance visualization, the curves at different y

values (ranging from 0.003 to 0.05) have been vertically

shifted.

It is worth noting that the form of the generic po-

tential U(x|y) closely resembles the potential between

different energetic minima in a magnetic cactus [43].

We have discovered that the alignment between Fig. 5
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Fig. 5. Set of plots of U(x|y) on x taken at different values of y in the region 0.003 < y < 0.05. For better view the curves for

different y are shifted in the vertical direction. As smaller y as more generations of peaks are proliferated

and Fig. 3 in the paper by [42] goes beyond mere coin-

cidence. By considering a more general potential of the

form W (x|y) = Up(x|y), where 0 < p < 1, and iden-

tifying x with Ω/(2π) (see [42]), it becomes possible

to fine-tune the parameters y and p to precisely match

W (x|y) with the shape of the energetic barriers between

equilibrium configurations of the magnetic cactus. This

alignment leads us to hypothesize the presence of sad-

dle structures in the potential describing the magnetic

cactus, akin to the one depicted in Fig. 2 a. As previ-

ously noted, the very occurrence of the BKT-like tran-

sition is determined by the saddle-like topology of the

β-function near the bifurcation points. Therefore, a

model system such as the magnetic cactus holds signif-

icant promise as a testing ground for exploring BKT

transitions.

The variables x and y in the potential U(x, y) are

combined in one complex variable, z = x + iy, play-

ing a role of a modular parameter. It has been men-

tioned in the Introduction that typically the real part,

x, has a sense of a «topological term», while the imag-

inary part, y, deals with the contribution coming from

the «disorder». Besides, the potential U(x, y) has been

constructed in a purely geometric way, and if the co-

ordinate x has a rather clear topological sense since it

is related to the winding angle α according to (6), the

meaning of the coordinate y as a disorder is far from

obvious. To establish the connection of y with the dis-

order we demonstrate that the function
√
−U(x, y) has

an interpretation as a spectral density in a well-known

model of a spectral statistics of random walks on en-

semble of intervals of length n (n = 1, 2, 3, ...), and n is

distributed exponentially with the density

Qn(β) = (eβ − 1)e−βn.

It is shown below that the corresponding spectral den-

sity, ρ(λ, β) coincides with the properly normalized

value

W (x, y) =
√
−U(x, y)

where the following change of variables is implied:

x =
1

π
arccos

λ− 2

2
, 2 ≤ λ ≤ 4, y = g(β)

(the function g(β) will be discussed below). This rela-

tion allows to establish a clear-cut view on the link of

y with the disorder strength, β.

So, consider the spectral statistics of a discrete

Laplace operator, L, on the interval of length n with the

periodic boundary conditions. Our desire is to compute

the spectral density ρ(λ) of L on the ensemble of ran-

dom intervals distributed with the probability density

Qn(β), which is nothing else as a discrete formulation

of the random walk trapping problem on ensemble of

random intervals [43, 44]. The spectrum of the n × n
periodic three-diagonal Laplacian matrix, Ln×n with

entries

[ai,i = 2, ai,i+1 = ai+1,i = 1, ai,j = 0,

otherwise({i, j} = 1, ..., n)],

reads

λj,n = 2− 2 cos
πj

n+ 1
, 1 ≤ j ≤ n. (36)

The spectral density ρ(λ) of the ensemble of n× n pe-

riodic random matrices Ln×n can be written in a form

of a resolvent:
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ρ(λ, β) = lim
n→∞

1

n

〈
n∑

m=1

m∑

j=1

δ(λ − λj,m)

〉

Qm(β)

=

= lim
n→∞
ε→0

ε

πn

n∑

m=1

Qm(β)

m∑

j=1

Im
1

λ− λj,m − iε
, (37)

where 〈...〉 means averaging over the distribution

Qm(β) = (eβ − 1)e−βm, and the identity

δ(x) =
1

π
lim
ε→+0

Im
1

x− iε (38)

is used to regularize the δ-function in (37). Substi-

tuting (36) into (37), we find the following expression

for ρ(λ):

Fig. 6. a — Plot of the function ρ̃(λ, β) for n = 200,

β = 7×10−2. b — Plot of the function n = 200, β = 7×10−2

for y = 10−4. The parameters β and y are adjusted to provide

one and the same «resolution cutoff»

ρ(λ, β) = lim
n→∞
ε→0

ε(eβ − 1)

πn
×

×
n∑

m=1

e−βm
m∑

j=1

1
(
λ− 2 + 2 cos πj

m+1

)2
+ ε2

(39)

The function ρ(λ, β) lies in the interval [0 ≤ λ ≤ 4],

is symmetric and has maximum at the point λ = 2.

The spectral density ρ(λ, β) in Eq.(39) matches at

0 < β ≪ 1 the function W (x, y)

W (x, y) =

(
12y

π

)1/2√
− ln

(
y1/4|η(x + iy)|

)
(40)

under the following change of variables in (40):

x =
1

π
arccos

λ− 2

2
, y = g(β) ≡ h(n, ǫ)β,

where h(n, ε) is some function of n and ε (but not of β),

and 0 < β ≪ 1. To see this matching, it is convenient

to compare the normalized functions,

ρ̃(λ, β) =
ρ(λ, β)

ρ(λ = 2, β)
, W̃ (λ, y) =

W (λ, y)

W (λ = 2, y)
.

In Fig. 6 a, b we have plotted the normalized functions

ρ̃(λ, β) (panel (a)) with the following set of parame-

ters: n = 200, β = 7 · 10−2, and n = 200, β = 7 · 10−2

(panel (b)) for y = 10−4. The values β and y are ad-

justed in such a way that both plots provide one and

the same «resolution cutoff» (i. e., number of smallest

peaks which can be still resolved).

The parameter y in (40) has a sense of a «resolution

cutoff» of the Dedekind relief. The relation between the

strength of the disorder, β, and the cutoff, y, can be

established using the following qualitative arguments.

On one hand, the maximal denominator in (39), n, de-

fines the total number of peaks that can be resolved,

nmax. The corresponding resolution cutoff can be es-

timated as nmaxβ ∼ 1. On the other hand, the cutoff

y in (40) can be estimated as y ∼ 1/nmax. Thus, in

the limit β → 0 one has a relation y ≈ β. Thus, the

variable y at y → 0 can be interpreted as an effect of

a disorder: as more pure the system (β → 0), as more

detailed fractal structure in Fig. 6 (see also Fig. 5) can

be seen.
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