RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

TUNNELING SPECTROSCOPY OF BaFe2−хNiхAs2 WITH VARIATION OF DOPING DEGREE IN SUPERCONDUCTING AND NORMAL STATES

PII
10.31857/S0044451024120071-1
DOI
10.31857/S0044451024120071
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 166 / Issue number 6
Pages
834-845
Abstract
Single crystals of pnictides BaFe2−хNiхAs2 with underdoped composition (x = 0.08) and overdoped compositions (x = 0.12, 0.14) were studied by tunneling spectroscopy in superconducting and normal states. The obtained I(V)- and dI(V)/dV characteristics of tunnel contacts reproducibly showed nonlinearity both below and above the critical temperature Tc, not directly related to superconducting properties. Its evolution with temperature and Tc along the doping phase diagram was studied, and possible causes of this nonlinearity existence are discussed.
Keywords
Date of publication
15.12.2024
Year of publication
2024
Number of purchasers
0
Views
36

References

  1. 1. Y. Kamihara, H. Hiramatsu, M. Hirano et al., J. Am. Chem. Soc. 128, 10012 (2006).
  2. 2. J. Paglione and R. L. Greene, Nature Phys. 6, 645 (2010).
  3. 3. J. D. Weiss, C. Tarantini, J. Jiang et al., Nature Mater. 11, 682 (2012).
  4. 4. H. Hosono, A. Yamamoto, H. Hiramatsu, and Y. Ma, Materials Today 21, 278 (2018).
  5. 5. X. Lu, Phase Diagram and Magnetic Excitations of BaFe2-xNixAs2: A Neutron Scattering Study, Springer, Singapore (2017).
  6. 6. S. Ideta, T. Yoshida, I. Nishi et al., Phys. Rev. Lett. 110, 107007 (2013).
  7. 7. D. V. Evtushinsky, V. B. Zabolotnyy, L. Harnagea et al., Phys. Rev. B. 87, 094501 (2013).
  8. 8. A. A. Kordyuk, V. B. Zabolotnyy, D. V. Evtushinsky et al., J Supercond. Nov. Magn. 26, 2837 (2013).
  9. 9. R. S. Dhaka, S. E. Hahn et al., Phys. Rev. Lett. 110, 067002 (2013).
  10. 10. T. E. Kuzmicheva, S. A. Kuzmichev, K. S. Pervakov, and V. A. Vlasenko, JETP Lett. 118, 514 (2023).
  11. 11. T. E. Kuzmicheva, S. A. Kuzmichev, K. S. Pervakov, and V. A. Vlasenko, Phys. Rev. B 104, 174512 (2021).
  12. 12. A. V. Sadakov, A. V. Muratov, S. A. Kuzmichev et al., JETP Lett. 116, 708 (2022).
  13. 13. Yu. A. Aleshchenko, A. V. Muratov, G. A. Ummarino et al., J. Phys.: Cond. Matter. 33, 045601 (2021).
  14. 14. G. A. Ummarino, A. V. Muratov, L. S. Kadyrov et al., Supercond. Sci. Technol. 33, 075005 (2020).
  15. 15. T. E. Kuzmicheva, A. V. Muratov, S. A. Kuzmichev et al., Physics-Uspekhi 60, 419 (2017).
  16. 16. I. I. Mazin, D. J. Singh, M. D. Johannes, M. H. Du, Phys. Rev. Lett. 101, 057003 (2008).
  17. 17. H. Kontani and S. Onari, Phys. Rev. Lett. 104, 157001 (2010).
  18. 18. M. Yi, D. Lu, J.-H. Chu et al., PNAS 108, 6878 (2011).
  19. 19. T. Shimojima, T. Sonobe, W. Malaeb et al., Phys. Rev. B 89, 045101 (2014).
  20. 20. T. Sonobe, T. Shimojima, A. Nakamura et al., Sci. Rep. 8, 2169 (2018).
  21. 21. P. Szabo, Z. Pribulova, G. Pristas, S.L. Bud’ko, P.C. Canfield, P. Samuely, Phys. Rev. B 79, 012503 (2009).
  22. 22. S. Onari and H. Kontani, Phys. Rev. Research 2, 042005(R) (2020).
  23. 23. T. Timusk, B. Statt, Rep. Prog. Phys. 62, 61 (1999).
  24. 24. S. Hufner, M. A. Hossain, A. Damascelli, G. A. Sawatzky, Rep. Progr. Phys. 71, 062501 (2008).
  25. 25. M. V. Sadovskii, Physics-Uspekhi 44, 515 (2001).
  26. 26. S. Onari and H. Kontani, Phys. Rev. B 100, 020507(R) (2019).
  27. 27. A. E. Karakozov, M. V. Magnitskaya, L. S. Kadyrov, and B. P. Gorshunov, Phys. Rev. B 99, 054504 (2019).
  28. 28. I. A. Nikitchenkov, A. D. Ilina, V. M. Mikhailov et al., Moscow Univ. Phys. Bull 78, 521 (2023).
  29. 29. K. S. Pervakov, V. A. Vlasenko, E. P. Khlybov et al., Supercond. Sci. Technol. 26, 015008 (2013).
  30. 30. Yu. F. Eltsev, K. S. Pervakov, V. A. Vlasenko et al., Physics-Uspekhi 57, 827 (2014).
  31. 31. V. A. Vlasenko, O. A. Sobolevskiy, A. V. Sadakov et al., JETP Letters. 107, 121 (2018).
  32. 32. J. Moreland and J. W. Ekin, J. Appl. Phys. 58, 3888 (1985).
  33. 33. S. A. Kuzmichev and T. E. Kuzmicheva, Low. Temp. Phys. 42, 1008 (2016).
  34. 34. M. Octavio, M. Tinkham, G. E. Blonder, and T. M. Klapwijk, Phys. Rev. B 27, 6739 (1983).
  35. 35. D. Averin and A. Bardas, Phys. Rev. Lett. 75, 1831 (1995).
  36. 36. F. Massee, S. de Jong, Y. Huang et al., Phys. Rev. B 80, 140507(R) (2009).
  37. 37. R. Kummel, U. Gunsenheimer, and R. Nicolsky, Phys. Rev. B 42, 3992 (1990).
  38. 38. Z. Popovic, S. Kuzmichev, and T. Kuzmicheva, J. Appl. Phys. 128, 013901 (2020).
  39. 39. T. E. Kuzmicheva, S. A. Kuzmichev, and N. D. Zhigadlo, Phys. Rev. B 100, 144504 (2019).
  40. 40. Yu. V. Sharvin, Sov. Phys. JETP 21, 655 (1965).
  41. 41. G. Wexler, Proc. Phys. Soc. 89, 927 (1966).
  42. 42. Yu. G. Naidyuk and I. K. Yanson, Point-Contact Spectroscopy, Springer, New York (2005).
  43. 43. I. Giaever and K. Megerle, Phys. Rev. 112, 1101 (1961).
  44. 44. F. Massee, Y. K. Huang, J. Kaas et al., EPL 92, 57012 (2010).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library