RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

QUASI-TWO-DIMENSIONAL ORGANIC CONDUCTOR к-(BEDT-TTF)2Cu[N(CN)2]Cl. CONFORMATIONAL DISORDER AND CHARGE STRUCTURE OF CONDUCTING LAYERS

PII
10.31857/S0044451024120046-1
DOI
10.31857/S0044451024120046
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 166 / Issue number 6
Pages
795-812
Abstract
Using X-ray diffraction analysis (XRD), Raman spectroscopy (RS), and quantum chemical calculations, the features of temperature behavior of thermally activated conformational disorder of terminal ethylene groups C2H4 of BEDT-TTF (or ET) molecules in crystals of quasi-two-dimensional organic conductor к-(BEDT-TTF)2Cu[N(CN)2]Cl were studied at temperatures from 112 K to 289 K. During slow cooling at a rate of –4 K/hour and steps of 10 K, crystal lattice parameters were measured and complete structural analysis was performed for characteristics temperatures. Crystal structure parameters show anomalous temperature behavior in the interval 175–250 К, in the same region an anomaly is observed in the behavior of intramolecular vibration frequencies of the ET molecule, which is associated with changes in the degree of conformational disorder. Based on the obtained structural data, the influence of the observed disorder on the electronic structure of the conducting layer was analyzed using quantum chemical modeling methods. In particular, the results of calculations using the semi- empirical extended Hückel method with a basis set optimized for the given system allowed determining the nature of electron density distribution both within the dimer and within the layer depending on the configuration of terminal ethylene groups. The main types of charge redistribution between molecules in the dimer ET2 were identified. It is shown how the population of configurations and the degree of dimer polarization affect the stability of different types of charge ordering within the conducting layer and, ultimately, the conductive properties of the crystal.
Keywords
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
3

References

  1. 1. T. G. Prokhorova and E. B. Yagubskii, Russ. Chem. Rev. 86, 164 (2017).
  2. 2. J. M. Williams, A. J. Schultz, U. Geiser et al., Science 252, 1501 (1972).
  3. 3. E. B. Yagubskii, N. D. Kushch, A.V. Kazakova et al.,
  4. 4. J. Exp. Theor. Phys. Lett. 82, 93 (2005).
  5. 5. V. N. Zverev, A.I. Manakov, S. S. Khasanov et al., Phys. Rev. B 74, 104504 (2006).
  6. 6. Y. Huang, Y. Hu, and S. Ren, Appl. Mater. Today 29, 101569 (2022).
  7. 7. C. Hotta, Phys. Rev. B 82, 241104 (2010).
  8. 8. N. Hassan, S. Cunningham, M. Mourigal et al., Science 360, 1101 (2018).
  9. 9. J. Muller, M. Lang, F. Steglich et al., Phys. Rev. B 65, 144521 (2002).
  10. 10. T. Hiramatsu, Y. Yoshida, G. Saito et al., J. Mater. Chem. C 3, 1378 (2014).
  11. 11. J. Muller, M. Lang, F. Steglich et al., J. De Physique Iv. Proc. 114, 341 (2004).
  12. 12. C. A. Angell, Science 267, 1924 (1995).
  13. 13. F. Gugenberger, R. Heid, C. Meingast et al., Phys. Rev. Lett. 69, 3774 (1992).
  14. 14. T. Komatsu, T. Nakamura, N. Matsukawa et al., Solid State Commun. 80, 843 (1991).
  15. 15. G. M. Sheldrick, Acta Crystallogr Sect. Found Adv. 71, 3 (2015).
  16. 16. G. M. Sheldrick, Acta Crystallogr Sect. C Struct. Chem. 71, 3 (2015).
  17. 17. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
  18. 18. F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 73 (2012).
  19. 19. R. Ditchfield, W. J. Hehre and J. A. Pople, J. Chem. Phys. 54, 724 (1971).
  20. 20. Y. Saito, A. Lohle, A. Kawamoto et al., Crystals 11, 817 (2021).
  21. 21. D. Cvijovic, Theor. Math. Phys. 166, 37 (2011).
  22. 22. D. P. Shoemaker, D. Y. Chung, H. Claus et al., Phys. Rev. B 86, 184511 (2012).
  23. 23. J. M. Williams, A. M. Kini, H. H. Wang et al., Inorg. Chem. 29, 3272 (1990).
  24. 24. Y. V. Sushko, V. A. Bondarenko, R. A. Petrosov et al., J. Phys. II 1, 1015 (1991).
  25. 25. H. O. Jeschke, M. de Souza, R. Valenti et al., Phys. Rev. B 85, 035125 (2012).
  26. 26. C. G. Darwin, Philos. Mag. Ser. 6 43, 800 (1922).
  27. 27. E. Arnold and D. M. Himmel, International Tables for Crystallography Volume F: Crystallography of Biological Macromolecules, John Wiley & Sons Ltd., (2011).
  28. 28. D. H. Juers, C. A. Farley, C. P. Saxby et al., Acta Crystallogr. Sect. D 74, 922 (2018).
  29. 29. D. H. Juers, J. Lovelace, H. D. Bellamy et al., Acta Crystallogr. Sect. D 63, 1139 (2007).
  30. 30. A. Vahedi-Faridi, J. Lovelace, H. D. Bellamy et al., Acta Crystallogr. Sect. D 59, 2169 (2003).
  31. 31. U. Shmueli, International Tables for Crystallography. Volume B: Reciprocal Space, Springer (2001).
  32. 32. K. Miyagawa, A. Kawamoto, Y. Nakazawa et al., Phys. Rev. Lett. 75, 1174 (1995).
  33. 33. M. A. Tanatar, T. Ishiguro, T. Kondo et al., Phys. Rev. B 59, 3841 (1999).
  34. 34. P. Wzietek, H. Mayaffre, D. Jerome et al., J. Phys. 6, 2011 (1996).
  35. 35. P. Wzietek, H. Mayaffre, D. Jerome et al., Synthetic Met. 85, 1511 (1997).
  36. 36. X. Su, F. Zuo, J. A. Schlueter et al., Phys. Rev. B 57, R14056 (1998).
  37. 37. S. Yasin, M. Dumm, B. Salameh et al., Eur. Phys. J. B 79, 383 (2011).
  38. 38. P. Nagel, V. Pasler, C. Meingast et al., Phys. Rev. Lett. 85, 2376 (2000).
  39. 39. T. Yamamoto, M. Uruichi, K. Yamamoto et al., J. Phys. Chem. B 109, 15226 (2005).
  40. 40. K. Yakushi, Crystals 2, 1291 (2012).
  41. 41. H. H. Wang, J. R. Ferraro, J. M. Williams et al., J. Chem. Soc., Chem. Commun., 1893 (1994).
  42. 42. I. Olejniczak, B. Barszcz, P. Auban-Senzier et al., J. Phys. Chem. C 126, 1890 (2022).
  43. 43. L. A. Hess and P. N. Prasad, J. Chem. Phys. 72, 573 (1980).
  44. 44. S. Tomic, M. Pinteric, T. Ivek et al., J. Phys.: Condens. Matter 25, 436004 (2013).
  45. 45. L. A. Girifalco, Statistical Mechanics of Solids, Oxford University Press, (2000).
  46. 46. L. Bellaiche and D. Vanderbilt, Phys. Rev. B 61, 7877 (2000).
  47. 47. P. Soven, Phys. Rev. 156, 809 (1967).
  48. 48. G. Landrum, YAeHMOP 3.0 (2023).
  49. 49. R. S. Mulliken, J. Chem. Phys. 23, 1833 (1955).
  50. 50. H. Nishioka and K. Ando, J. Chem. Phys. 134, 1 (2011).
  51. 51. A. Biancardi, S. C. Martin, C. Liss et al., J. Chem. Theory Comput. 13, 4154 (2017).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library