RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

CHANGING THE PROPERTIES OF Hf0.5Zr0.5O2 DURING CYCLIC REPOLARIZATION OF FERROELECTRIC CAPACITORS WITH DIFFERENT ELECTRODE MATERIALS

PII
10.31857/S0044451024110130-1
DOI
10.31857/S0044451024110130
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 166 / Issue number 5
Pages
703-709
Abstract
The interest in the ferroelectric non-volatile memory as a candidate for low power consumption electronic memories was raised after the discovery of ferroelectricity in hafnium oxide. Doping by different elements of hafnia films allows improving their ferroelectric properties. In this work, the transport experiments are combined with the simulations to study the evolution of ferroelectric properties and the mean distance between oxygen vacancies during the endurance of hafnium-zirconium oxide in metal-ferroelectric-metal structures to study the impact of different metal electrodes.
Keywords
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
72

References

  1. 1. D. Bondurant, Ferroelectrics 112, 273 (1990).
  2. 2. T. S. B¨oscke, J. M¨uller, D. Br¨auhaus et al., Appl. Phys. Lett. 99, 102903 (2011).
  3. 3. T. S. B¨oscke, S. Teichert, D. Br¨auhaus et al., Appl. Phys. Lett. 99, 112904 (2011).
  4. 4. X. Sang, E.D. Grimley, T. Schenk et al., Appl.Phys. Lett. 106, 162905 (2015).
  5. 5. M. Trentzsch, S. Flachowsky, R. Richter et al., IEEE IEDM, 11.5.1 (2016).
  6. 6. S. Mueller, J. Muller, U. Schroeder et al., IEEE Trans.Device Mater.Reliab. 13, 93 (2013).
  7. 7. M. Pesiˇc, F.P.G. Fengler, S. Slesazeck et al., IEEE IRPS, MY–3–1 (2016).
  8. 8. U. Schroeder, E. Yurchuk, J. M¨uller et al., Jpn. J. Appl.Phys. 53, 08LE02 (2014).
  9. 9. H. J. Kim, M.H. Park, Y. J. Kim et al., Nanoscale 8, 1383 (2016).
  10. 10. Y. Lee, H. Alex Hsain, S. S. Fields et al., Appl.Phys. Lett. 118, 012903 (2021).
  11. 11. M.G. Kozodaev, A.G. Chernikova, E.V. Korostylev et al., J.Appl.Phys. 125, 034101 (2019).
  12. 12. M. I. Popovici, A.M. Walke, J. Bizindavyi et al., ACS Appl.Electron.Mater. 4, 1823 (2022).
  13. 13. M.H. Park, H. J. Kim, Y. J. Kim et al., Phys. Status Solidi (RRL) 8, 532 (2014).
  14. 14. S. S. Fields, S. W. Smith, S. T. Jaszewski et al., J.Appl.Phys. 130, 134101 (2021).
  15. 15. A.G. Chernikova, M.G. Kozodaev, R.R. Khakimov et al., Appl.Phys. Lett. 117, 192902 (2020).
  16. 16. S. Migita, H. Ota, H. Yamada et al., Jpn. J.Appl. Phys. 57, 04FB01 (2018).
  17. 17. S.W. Smith, A.R. Kitahara, M.A. Rodriguez et al., Appl.Phys. Lett. 110, 072901 (2017).
  18. 18. M.H. Park, H. J. Kim, Y. J. Kim et al., Appl.Phys. Lett. 105, 072902 (2014).
  19. 19. T. Shimizu, T. Yokouchi, T. Shiraishi et al., Jpn. J. Appl.Phys. 53, 09PA04 (2014).
  20. 20. M. Hyuk Park, H. Joon Kim, Y. Jin Kim et al., Appl. Phys. Lett. 102, 112914 (2013).
  21. 21. M.H. Park, H. J. Kim, Y. J. Kim et al., Appl.Phys. Lett. 104, 072901 (2014).
  22. 22. T. Shimizu, T. Yokouchi, T. Oikawa et al., Appl. Phys. Lett. 106, 112904 (2015).
  23. 23. G. Karbasian, R. dos Reis, A.K. Yadav et al., Appl. Phys. Lett. 111, 022907 (2017).
  24. 24. T.M. Zalyalov and D.R. Islamov, 2022 IEEE EDM, 48 (2022).
  25. 25. К.А. Насыров, В.А. Гриценко, ЖЭТФ 139, 1172 (2011).
  26. 26. D.R. Islamov, V.A. Gritsenko, C.H. Cheng et al., Appl.Phys. Lett. 105, 222901 (2014).
  27. 27. V.A. Gritsenko, T.V. Perevalov, and D.R. Islamov, Phys.Rep. 613, 1 (2016).
  28. 28. V.A. Gritsenko and A.A. Gismatulin, Appl.Phys. Lett. 117, 142901 (2020).
  29. 29. D.R. Islamov, T.V. Perevalov, V.A. Gritsenko et al., Appl.Phys. Lett. 106, 102906 (2015).
  30. 30. Д.Р. Исламов, А.Г. Черникова, М. Г. Козодаев и др., Письма в ЖЭТФ 102, 610 (2015).
  31. 31. D.R. Islamov, V.A. Gritsenko, T.V. Perevalov et al., Acta Mater. 166, 47 (2019).
  32. 32. Д.Р. Исламов, В.А. Гриценко, А. Чин, Автометрия 53, 102 (2017).
  33. 33. A.A. Pil’nik, A.A. Chernov, and D.R. Islamov, Sci.Rep. 10, 15759 (2020).
  34. 34. J. M¨uller, T. S. B¨oscke, D. Br¨auhaus et al., Appl. Phys. Lett. 99, 112901 (2011).
  35. 35. P. Nukala, M. Ahmadi, Y. Wei et al., Science 372, 630 (2021).
  36. 36. H.C. Barshilia, M. S. Prakash, A. Poojari et al., Thin Solid Films 460, 133 (2004).
  37. 37. R. Alcala, M. Materano, P.D. Lomenzo et al., Adv. Funct.Mater. 33, 2303261 (2023).
  38. 38. E.D. Grimley, T. Schenk, X. Sang et al., Adv.Electron. Mater. 2, 1600173 (2016).
  39. 39. R. Alcala, F. Mehmood, P. Vishnumurthy et al., IEEE IMW (2022).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library