RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

ANDREEV REFLECTION SPECTROSCOPY FeSe: ANALYSIS WITHIN THE FRAMEWORK OF A TWO-BAND MODEL

PII
10.31857/S0044451024110105-1
DOI
10.31857/S0044451024110105
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 166 / Issue number 5
Pages
679-687
Abstract
The Andreev reflection spectra sNS (V,T) = dI/dV (V,T) of Ag/FeSe point contacts were measured in the temperature range T = 4 – 14 K. Analysis of the spectra within the framework of a two-band model with order parameters of s-symmetry revealed two energy gaps Di (i = 1, 2) and allowed us to plot their dependences on temperature. Approximation of the Di(T ) dependencies by a two-band isotropic model in the “pure” limit showed that their description requires taking into account both intraband and interband interactions of superconducting condensates. Such a description corresponds to s- or s++-symmetry of the order parameter.
Keywords
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
72

References

  1. 1. R. Liu, M.B. Stone, S. Gao et al., arXiv: 2401. 05092.
  2. 2. T. Shibauchi, T. Hanaguri, and Y. Matsuda, J.Phys. Soc. Jpn. 89, 102002 (2020).
  3. 3. S. Kasahara, Y. Sato, S. Licciardello et al., Phys. Rev. Lett. 124, 107001 (2020).
  4. 4. G.R. Stewart, Rev.Mod.Phys. 83, 1589 (2011).
  5. 5. X. Liu, L. Zhao, S. He et al., J.Phys.Condens. Matter. 27, 183201 (2015).
  6. 6. T. Terashima, N. Kikugawa, A. Kiswandhi et al., Phys.Rev.B 90, 144517 (2014).
  7. 7. Y. Sun, S. Kittaka, S. Nakamura et al., Phys. Rev.B 96, 220505 (2017).
  8. 8. D. Liu, C. Li, J. Huang et al., Phys.Rev.X 8, 031033 (2018).
  9. 9. P.O. Sprau, A. Kostin, A. Kreisel et al., Science 357, 75 (2017).
  10. 10. L. Jiao, C.-L. Huang, S. Robler et al., Sci.Rep. 7, 44024 (2017).
  11. 11. R. Khasanov, M. Bendele, A. Amato et al., Phys. Rev. Lett. 104, 087004 (2010).
  12. 12. Ya.G. Ponomarev, S.A. Kuzmichev, T.E. Kuzmicheva et al., J. Supercond.Nov.Magn. 26, 2867 (2013).
  13. 13. Yu.G. Naidyuk, O.E. Kvitnitskaya, N.V. Gamayunova et al., Phys.Rev.B 96, 094517 (2017).
  14. 14. D. L. Bashlakov, N.V. Gamayunova, L.V. Tyutrina et al., Low Temp.Phys. 45, 1222 (2019).
  15. 15. M. Bristow, A. Gower, J.C.A. Prentice et al., Phys.Rev.B 108, 184507 (2023).
  16. 16. I. Giaever, Phys.Rev. Lett. 5, 464 (1960).
  17. 17. G.E. Blonder, M. Tinkham, and T.M. Klapwijk, Phys.Rev.B 25, 4515 (1982).
  18. 18. R. S. Gonnelli, D. Daghero, G.A. Ummarino, V.A. Stepanov et al., Phys.Rev. Lett. 89, 247004 (2002).
  19. 19. D. Daghero and R. S. Gonnelli, Supercond. Sci. Technol. 23, 043001 (2010).
  20. 20. D. Daghero, M. Tortello, G.A. Ummarino, and R. S. Gonnelli, Rep.Prog.Phys. 74, 124509 (2011)
  21. 21. В.А. Москаленко, ФММ 8, 503 (1959).
  22. 22. H. Suhl, B.T. Matthias, and L.R. Walker, Phys. Rev. Lett. 3, 552 (1959).
  23. 23. E. J. Nicol and J.P. Carbotte, Phys.Rev.B 71, 054501 (2005).
  24. 24. A. Bussmann-Holder, arXv: cond-mat/0909.3603.
  25. 25. D. Chareev, E. Osadchii, T. Kuzmicheva et al., Cryst.Eng.Comm. 15, 1989 (2013).
  26. 26. D.A. Chareev, O. S. Volkova, N.V. Geringer et al., Crystallogr.Rep. 61, 682 (2016).
  27. 27. Ю.И. Горина,М.В. Голубков, Т.И. Осина и др., ФТТ 59, 1897 (2017).
  28. 28. С.И. Веденеев, М.В. Голубков, Ю.И. Горина и др., ЖЭТФ 154, 844 (2018).
  29. 29. В.А. Степанов, М.В. Голубков, ЖЭТФ 157, 245 (2020).
  30. 30. Yu.G. Naidyuk, N.V. Gamayunova, O.E. Kvitnitskaya et al., Low Temp.Phys. 42, 42 (2016).
  31. 31. D. Daghero, M. Tortello, R. S. Gonnelli et al., Phys.Rev.B 80, 060502 (2009).
  32. 32. S. Kasahara, T. Watashige, T. Hanaguri et al., Proc.Nat.Acad. Sci.USA 111, 16309 (2014).
  33. 33. J.K. Dong, T.Y. Guan, S.Y. Zhou et al., Phys. Rev.B 80, 024518 (2009).
  34. 34. S. Knoner, D. Zielke, S. Kohler et al., Phys.Rev.B 91, 174510 (2015).
  35. 35. A.E. Bohmer, V. Taufour,W.E. Straszheim et al., Phys.Rev.B 94, 024526 (2016).
  36. 36. A.A. Sinchenko, P.D. Grigoriev, A.P. Orlov et al., Phys.Rev.B 95, 165120 (2017).
  37. 37. RS PRO Silver Conductive Paint (in Google).
  38. 38. A. Krzton-Maziopa, V. Svitlyk, and E. Pomjakushina, J.Phys.: Condens.Matter 28, 293002 (2016).
  39. 39. E. Venzmer, A. Kronenberg, and M. Jourdan, J. Supercond.Nov.Magn. 29, 897 (2016).
  40. 40. Y. J. Yan, W.H. Zhang, M.Q. Ren et al., Phys. Rev.B 94, 134502 (2016).
  41. 41. D. Daghero, E. Piatti, N.D. Zhigadlo, and R. S. Gonnelli, Low Temp.Phys. 49, 886 (2023).
  42. 42. J. Vrba and S.B. Woods, Phys.Rev.B 4, 87 (1971).
  43. 43. G.A. Zvyagina, T.N. Gaydamak, K.R. Zhekov et al., arXv: cond/mat1303.4948 (2013).
  44. 44. D. Phelan, J.N. Millican, E. L. Thomas et al., Phys.Rev.B 79, 014519 (2009).
  45. 45. W. L. McMillan, Phys.Rev. 175, 537 (1968).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library