RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

EVOLUTION EQUATION OF ELECTRIC POLARIZATION IN MULTIFERROICS PROPORTIONAL TO THE VECTOR PRODUCT OF CELL ION SPINS UNDER THE INFLUENCE OF THE HEISENBERG HAMILTONIAN

PII
10.31857/S0044451024110099-1
DOI
10.31857/S0044451024110099
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 166 / Issue number 5
Pages
665-678
Abstract
An evolution equation for polarization (electric dipole moment density) has been derived for type II multiferroics, where polarization is proportional to the vector product of cell ion spins. A regime is considered in which the main evolution mechanism is exchange Coulomb interaction, modeled by the Heisenberg Hamiltonian. The obtained polarization evolution equation contains spin density and nematic tensor density, which appears as an anticommutator of spins for particles with S = 1 and higher (for particles with spin S = 1/2 it degenerates into particle concentration). Also, to construct a closed model of spin and polarization evolution in multiferroics, equations for the above-mentioned physical quantities were obtained. The spin-current model is justified using the momentum balance equation and spin evolution equation, derived from the microscopic many-particle Pauli equation taking into account spin-orbit interaction. To analyze the mechanism of electric dipole moment formation proportional to the vector product of magnetic ion spins, the spin-current model was used, within which the relationship between the proportionality coefficient and the exchange integral was obtained. The mean-field approximation is used in the work, where the many-particle wave function of the ion system is approximated by the product of single-particle functions.
Keywords
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
69

References

  1. 1. А.П. Пятаков, А.К. Звездин, Магнитоэлектрические материалы и мультиферроики, УФН 182, 593 (2012), DOI: 10.3367/UFNr.0182. 201206b.0593 [A.P. Pyatakov and A.K. Zvezdin, Magnetoelectric and Multiferroic Media, Phys. Usp. 55, 557 (2012), DOI: 10.3367/UFNe.0182.201206b.0593].
  2. 2. Y. Tokura, S. Seki, and N. Nagaosa, Multiferroics of Spin Origin, Rep.Prog.Phys. 77, 076501 (2014), DOI: 10.1088/0034-4885/77/7/076501.
  3. 3. H. Katsura, N. Nagaosa, and A.V. Balatsky, Spin Current and Magnetoelectric Effect in Noncollinear Magnets, Phys.Rev. Lett. 95, 057205 (2005), DOI: 10.1103/PhysRevLett.95.057205.
  4. 4. M. Mostovoy, Ferroelectricity in Spiral Magnets, Phys.Rev. Lett. 96, 067601 (2006), DOI: 10.1103/PhysRevLett.96.067601.
  5. 5. L. S. Kuz’menkov and S.G. Maksimov, Quantum Hydrodynamics of Particle Systems with Coulomb Interaction and Quantum Bohm Potential, Theor. Mat.Phys. 118, 227 (1999).
  6. 6. L. S. Kuz’menkov, S.G. Maksimov, and V.V. Fedoseev, Microscopic Quantum Hydrodynamics of Systems of Fermions: Part I, Theor.Mat.Phys. 126, 110 (2001).
  7. 7. P.A. Andreev, I.N. Mosaki, and M. I. Trukhanova, Quantum Hydrodynamics of the Spinor Bose – Еinstein Condensate at Non-Zero Temperatures, Phys. Fluids 33, 067108 (2021), DOI: 10.1063/5.0053035.
  8. 8. P. Andreev, Measuring the Coupling Constant of Polarized Fermions via Sound Wave Spectra, Theor.Mat.Phys. 213, 1762 (2022), DOI: 10.1134/S0040577922120091.
  9. 9. T. Koide, Spin-Electromagnetic Hydrodynamics and Magnetization Induced by Spin-Magnetic Interaction, Phys.Rev.C 87, 034902 (2013).
  10. 10. А. Ахиезер, В. Барьяхтар, С. Пелетминский, Спиновые волны, Наука, Москва (1967).
  11. 11. Y. Kawaguchi and M. Ueda, Theory of Spin-2 Bose – Einstein Condensates: Spin Correlations, Magnetic Response, and Excitation Spectra, Phys. Rep. 520, 253 (2012).
  12. 12. D.M. Stamper-Kurn and M. Ueda, Spinor Bose – Einstein Condensates, Rev.Mod.Phys. 85, 1191 (2013).
  13. 13. M. I. Trukhanova and P. Andreev, A New Microscopic Representation of the Spin Dynamics in Quantum Systems with the Coulomb Exchange Interactions, Moscow University Physics Bulletin, 79, 232 (2024), DOI: 10.3103/S0027134924700255, arXiv:2305.03826.
  14. 14. J. Hu, Microscopic Origin of Magnetoelectric Coupling in Noncollinear Multiferroics, Phys.Rev. Lett. 100, 077202 (2008), DOI: 10.1103/PhysRevLett.100.077202.
  15. 15. V.B. Berestetskii, E.M. Lifshitz, and L.P. Pitaevskii, Vol. 4, Quantum Electrodynamics, Butterworth –Heinemann (1982).
  16. 16. П.А. Андреев, М.И. Труханова, Квантовогидродинамическое представление обменного взаимодействия в теории описания магнитоупорядоченных сред, Вестник Моск. унив., сер. 3, физика, астрономия 78(4), 2340103 (2023), DOI: 10.55959/MSU0579-9392.78.2340103.
  17. 17. Л.Д. Ландау, Е.М. Лифшиц, Теоретическая физика, т. 9, Статистическая физика, ч. 2, Теория конденсированного состояния, Физматлит, Москва (2001).
  18. 18. Д.И. Хомский, Мультиферроики и не только: электрические свойства различных магнитных текстур, ЖЭТФ 159, 581 (2021), DOI: 10.31857/S0044451021040015 [D. I. Khomskii, Multiferroics and Beyond: Electric Properties of Different Magnetic Textures, JETP 132, 482 (2021)].
  19. 19. S. Dong, J.-M. Liu, S.-W. Cheong, and Z. Ren, Multiferroic Materials and Magnetoelectric Physics: Symmetry, Entanglement, Excitation, and Topology, Adv.Phys. 64, 519 (2015), DOI: 10.1080/00018732.2015.1114338.
  20. 20. T. Goto, T. Kimura, G. Lawes, A. Ramirez, and Y. Tokura, Ferroelectricity and Giant Magnetocapacitance in Perovskite Rare-Earth Manganites, Phys.Rev. Lett. 92, 257201 (2004).
  21. 21. A. Munoz, J. Alonso, M.T. Casais, M. J. MartnezLope, J. L. Martinez, and M.T. Fernandez-Diaz, The Magnetic Structure of YMnO3 Perovskite Revisited, J.Phys.: Condens.Matter 14, 3285 (2002).
  22. 22. V.Yu. Pomjakushin, M. Kenzelmann, A. Donni, A.B. Harris, T. Nakajima, S. Mitsuda, M. Tachibana, L. Keller, J. Mesot, and H. Kitazawa, Evidence for Large Electric Polarization from Collinear Magnetism in TmMnO3, New J.Phys. 11, 043019 (2009), DOI: 10.1088/1367-2630/11/4/043019.
  23. 23. H. Kimura, Y. Sakamoto, M. Fukunaga, H. Hiraka, and Y. Noda, Control of Magnetic Interaction and Ferroelectricity by Nonmagnetic Ga Substitution in Multiferroic YMn2O5, Phys. Rev.B 87, 104414 (2013), https://doi.org/10.1103/ PhysRevB.87.104414.
  24. 24. P.A. Andreev and L. S. Kuz’menkov, On the Equation of State for the “Thermal” Part of the Spin Current: The Pauli Principle Contribution in the Spin Wave Spectrum in a Cold Fermion System, Prog.Theor.Exp.Phys. 2019, 053J01 (2019), DOI: 10.1093/ptep/ptz029.
  25. 25. Л.Д. Ландау, Е.М. Лифшиц, Теоретическая физика, т. 3, Квантовая механика. Нерелятивистская теория, Наука, Москва (1974).
  26. 26. I.A. Sergienko, C. Sen, and E. Dagotto, Ferroelectricity in the Magnetic E-Phase of Orthorhombic Perovskites, Phys.Rev. Lett. 97, 227204 (2006), DOI: 10.1103/PhysRevLett.97.227204.
  27. 27. P.A. Andreev, Extended Hydrodynamics of Degenerate Partially Spin Polarized Fermions with Short-Range Interaction up to the Third Order by Interaction Radius Approximation, Laser Phys. 31, 045501 (2021), https:// doi.org/10.1088/15556611/ abe717.
  28. 28. A. S. Moskvin and S.-L. Drechsler, Microscopic Mechanisms of Spin-Dependent Electric Polarization in 3d Oxides, Eur.Phys. J.B 71, 331 (2009), DOI: 10.1140/epjb/e2009-00264-6.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library