RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

PHASE TRANSITION AND CROSSOVERS IN THE CAIRO LATTICE OF ISING DIPOLES

PII
10.31857/S0044451024110087-1
DOI
10.31857/S0044451024110087
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 166 / Issue number 5
Pages
655-664
Abstract
The thermodynamics of finite-number Ising spin systems on the Cairo spin ice lattice is investigated using Monte Carlo numerical calculations in the model of long-range dipole-dipole interaction with limited radius. The Cairo lattice consists of vertices combining three or four nearest neighboring spins. A parameter is added to the model, the variation of which allows changing the balance of interaction energies between vertices with three and four nearest spins without changing the geometry of the Cairo lattice. It is shown that the variational parameter affects the nature of the phase transition process from short-range order to disorder. At low values of this parameter, the transition is a crossover, while at its high values, it is a second-order phase transition.
Keywords
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
63

References

  1. 1. R. F. Wang, C. Nisoli, R. S. Freitas et al., Nature 439, 303 (2006).
  2. 2. C. Nisoli, R. Moessner, P. Schiffer, Rev.Mod.Phys. 85, 1473 (2013)
  3. 3. Y. Shevchenko, A. Makarov, and K. Nefedev, Phys. Lett.A 381, 428 (2017).
  4. 4. Y. Shevchenko, K. Nefedev, and Y. Okabe, Phys. Rev.E 95, 052132 (2017).
  5. 5. A. Farhan, P.M. Derlet, A. Kleibert et al., Nature Phys. 9, 375 (2013).
  6. 6. A. Han, P.M. Derlet, A. Kleibert et al., Phys.Rev. Lett. 111, 057204 (2013).
  7. 7. M. Saccone, K. Hofhuis, Y. Huang et al., Phys.Rev. Mater. 3, 104402 (2019).
  8. 8. M. J. Morrison, T.R. Nelson, and C. Nisoli, New J. Phys. 15, 045009 (2013).
  9. 9. S.H. Skjærvø, C.H. Marrows, R. L. Stamps et al., Nat.Rev.Phys. 2, 13 (2020).
  10. 10. J. Park, B. L. Le, J. Sklenar et al., Phys.Rev.B 96, 024436 (2017).
  11. 11. Y. Li, T.X. Wang, Z.T. Hou et al., Phys. Lett.A 380, 2013 (2016).
  12. 12. G.W. Chern, M. J. Morrison, and C. Nisoli, Phys. Rev. Lett. 111, 177201 (2013).
  13. 13. I. Gilbert, G.W. Chern, S. Zhang et al., Nature Phys. 10, 670 (2014).
  14. 14. I. Gilbert, Y. Lao, I. Carrasquillo et al., Nature Phys. 12, 162 (2015).
  15. 15. X. Zhang, A. Duzgun, Y. Lao et al., Nature Communications 12, (2021).
  16. 16. H. Stopfel, U.B. Arnalds, A. Stein et al., Phys.Rev. Mater. 5, 114410 (2021).
  17. 17. G.W. Chern, P. Mellado, and O. Tchernyshyov, Phys.Rev. Lett. 106, 207202 (2011).
  18. 18. G.W. Chern and O. Tchernyshyov, Phil.Trans.Royal Soc.A: Math., Phys.Engin. Sci. 370, 5718 (2012).
  19. 19. G. M¨oller and R. Moessner, Phys.Rev.B 80, 140409 (2009).
  20. 20. A.G. Makarov, K. Makarova, Y.A. Shevchenko et al., JETP Lett. 110, 702 (2019).
  21. 21. U.B. Arnalds, A. Farhan, R.V. Chopdekar et al., Appl.Phys. Lett. 101, 112404 (2012).
  22. 22. I. Rousochatzakis, A.M. L¨auchli, and R. Moessner, Phys.Rev.B 85, 104415 (2012).
  23. 23. A.M. Abakumov, D. Batuk, A.A. Tsirlin et al., Phys. Rev.B 87, 024423 (2013).
  24. 24. M. Rojas, O. Rojas, and S.M. Souza, Phys.Rev.E 86, 051116 (2012).
  25. 25. A.A. Tsirlin, I. Rousochatzakis, D. Filimonov et al., Phys.Rev.B 96, 094420 (2017).
  26. 26. C. Castelnovo, R. Moessner, and S. L. Sondhi, Nature 451, 42 (2008).
  27. 27. Ю.А.Шевченко, А. Г. Макаров, П.Д. Андрющенко и др., ЖЭТФ 151, 1146 (2017).
  28. 28. R.G. Melko, B.C. Hertog, and M. J. P. Gingras, Phys.Rev. Lett. 87, 067203 (2001).
  29. 29. R.G. Melko and M. J. P. Gingras, J. Phys.: Cond. Matt. 16, 1277 (2004).
  30. 30. Y. Shevchenko, V. Strongin, V. Kapitan et al., Phys. Rev.E 106, 064105 (2022).
  31. 31. K. Makarova, V. Strongin, I. Titovets et al., Phys. Rev.E 103, 042129 (2021).
  32. 32. E.C. Stoner and E.P. Wohlfarth, Phil.Trans.Royal Soc. London. Series A, Math.Phys. Sci. 240, 599 (1948).
  33. 33. S. Gliga, A.K´akay, L. J. Heyderman et al., Phys. Rev.B 92, 060413 (2015).
  34. 34. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth et al., J.Сhem. Phys. 21, 1087 (1953).
  35. 35. W.K. Astings, Biometrika 57, 97 (1970).
  36. 36. K. Makarova, A. Makarov, V. Strongin et al., J.Comp.Appl.Math. 427, 115153 (2023).
  37. 37. H. Gould and J. Tobochnik, Comp. Phys. 3, 82 (1989).
  38. 38. А.А. Гухман, Об основаниях термодинамики, ЛКИ (2010).
  39. 39. S. Gluzman and V. I. Yukalov, Phys.Rev.E 58, 4197 (1998).
  40. 40. H. Nishimori and G. Ortiz, Elements of Phase Transitions and Critical Phenomena, Oxford University Press (2010).
  41. 41. C.A.F. Vaz, J.A.C. Bland, and G. Lauhoff, Rep. Prog. Phys. 71 056501 (2008).
  42. 42. T. Bourdel, L. Khaykovich, J. Cubizolles et al., Phys. Rev. Lett. 93, 050401 (2004).
  43. 43. W.G. Van der Wiel, S.D. Franceschi, T. Fujisawa et al., Science 289, 2105 (2000).
  44. 44. P. Lubitz, M. Rubinstein, JJ. Krebs et al., J.Appl. Phys. 11, 6901 (2001).
  45. 45. A. Farhan, A. Scholl, C. Petersen et al., Nature Commun. 1, 12635 (2016).
  46. 46. W. F. Brown Jr. and A.H. Morrish, Phys.Rev. 4, 1198 (1957).
  47. 47. J.A. Osborn, Phys.Rev. 11–12 , 351 (1945).
  48. 48. A. Aharoni, J.Appl.Phys. 6, 3432 (1998).
  49. 49. M. Saccone, A. Scholl, S. Velten et al., Phys.Rev.B 22, 224403 (2019).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library