RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

PRECISION MEASUREMENT OF GRAVITATIONAL FREQUENCY SHIFT OF ELECTROMAGNETIC SIGNALS

PII
10.31857/S0044451024110063-1
DOI
10.31857/S0044451024110063
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 166 / Issue number 5
Pages
632-640
Abstract
Communication radio signals between an orbital spacecraft (SC) and a ground tracking station (GTS) experience a frequency shift proportional to the positional difference of their gravitational potentials. The effect constitutes an experimental basis of the general theory of relativity (GR) as one of the aspects of Einstein's equivalence principle (EEP). The article presents the results of precision measurement of the effect using frequency standards placed on the SC and GTS. Data from special “gravitational sessions” of radio communication accumulated during the “RadioAstron” (RA) space radio telescope mission in 2015–2019 were used. Scrupulous analysis of these data allows to confirm the correspondence between theory and experiment with high accuracy: the violation parameter (deviation from GR) was 1.57 ± 3.96 · 10−5.
Keywords
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
72

References

  1. 1. N. S. Kardashev, V. V.Khartov, V. V.Abramov et al., Astron. Rep. 57, 153 (2013).
  2. 2. C. M. Will, Living Rev. Relativity 17, 4 (2014).
  3. 3. A. V. Biriukov, D. A. Litvinov, and V. N. Rudenko, Astron. Rep. 58, 783 (2014). .
  4. 4. R. F. C. Vessot and M.W. Levine. General Relativity and Gravitation 10, 181, (1979).
  5. 5. R. F. C. Vessot, M. W. Levine, and Е. М. Mattison, Phys. Rev. Lett. 45, 20 (1980).
  6. 6. P. Delva, N. Puchades, Е. Schonemann et al., Phys. Rev. Lett. 121, 231101 (2018).
  7. 7. S. Herrmann, F. Finke, M. Lulf et al., Phys. Rev. Lett, 121 231102 (2018).
  8. 8. N. V. Nunes, N. Bartel, M. V. Zakhvatkin et al., Advances in Space Research, 65, 790 (2020).
  9. 9. N. V. Nunes, N. Bartel, A. Belonenko еt al., Class. Quantum Grav. 40, 175005 (2023).
  10. 10. G. Molera Calves, Ph. D. Dissertation, Aalto University, Pub. No 42 (2012).
  11. 11. A. V. Belonenko, A. V. Gusev, and V. N. Rudenko, Gravitation and Cosmology, 27, 383 (2021).
  12. 12. A. V.Belonenko, S. M. Popov, V. N. Rudenko et al., Grav. and cosmology, 26, 128 (2020).
  13. 13. А. В. Гусев, Д.А. Литвтнов, В. Н. Руденко,ЖЭТФ 150, 937 (2016) [A. V. Gusev, D. A. Litvinov, and V. N. Rudenko, J. Exp. Theor. Phys. 123, 814 (2016)].
  14. 14. M. V. Sazhin et al., Astron. Rep. 54, 959 (2010).
  15. 15. IAU SOFA Board, IAU SOFA Software Collection Issue 2021-01-25 http://www.iausofa.org
  16. 16. M. V. Zakhvatkin, A. S. Andrianov, V. Y. Avdeev et al., Advances in Space Research, 65, 798 (2021).
  17. 17. A. V. Belonenko, F. S. Gurin, V. N. Rudenko et al., Пространство, время и фундаментальные взаимодействия. 3–4, 3 (2023).
  18. 18. B. R. Levin, Teoreticheskie Osnovy Statisticheskj radiotekhniki, 1, 353 (1989).
  19. 19. D. A. Litvinov, V. N. Rudenko, A. V. Alakoz et al., Phys. Lett. A 382, 2192 (2018).
  20. 20. D. Litvinov and S. Pilipenko, Class. Quant. Grav. 38, 135010 (2021).
  21. 21. D. Rosselli, F. Marulli, A. Veropalumbo, Astron. Astrophys. 669, (2023).
  22. 22. P. C. Brandt, E. A. Provornikova, A. Cocoros et al., Acta Astronautica 199, 364 (2022).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library