RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

INTERFERENCE CORRECTION TO OPTICAL CONDUCTANCE OF A MAGNETO-ACTIVE MEDIUM WITH SCATTERING INHOMOGENEITIES

PII
10.31857/S0044451024090037-1
DOI
10.31857/S0044451024090037
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 166 / Issue number 3
Pages
316-329
Abstract
The interference contribution to the optical conductance (total transmission) of a disordered sample is calculated. It is shown that wave interference in the medium is suppressed due to helicity-flip scattering events. As a result, when the cross-section of this process changes resonantly, as in the case of scattering by Mie particles near the first Kerker point, the spectral dependence of the interference contribution also becomes resonant. When waves propagate through a magneto-active medium, the applied magnetic field does not disrupt the interference of waves with given helicity but suppresses it if the helicity changes along different parts of the trajectory. This leads to a decrease in the interference contribution to conductance with increasing magnetic field. A similar phenomenon ― negative magnetoresistance ― is known as a consequence of weak localization of electrons in metals with impurities. It is found that with increasing magnetic field, the change in the interference correction to the optical conductance approaches a certain limit value, depending on the ratio of transport mean free path to helicity-flip scattering length. The possibility of controlling the transition to strong “Anderson” localization in the quasi-one-dimensional case (magneto-active waveguide) using the field is discussed.
Keywords
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
64

References

  1. 1. Analogies in Optics and Microelectronics, ed. by W. van Haeringen and D. Lenstra, Kluwer, Dordrecht (1990).
  2. 2. E. Akkermans and G. Montambaux, Mesoscopic Physics of Electrons and Photons, Cambrige University Press, Cambrige (2007).
  3. 3. S. Rotter and S. Gigan, Rev. Mod. Phys. 89, 015005 (2017).
  4. 4. L. Schertel, O. Irtenkauf, C. M. Aegerter et al., Phys. Rev.A 100, 043818 (2019).
  5. 5. K. Y. Bliokh, S. A. Gredeskul, P. Rajan et al., Phys. Rev.B 85, 014205 (2012).
  6. 6. T. Goto, A. V. Dorofeenko, A. M. Merzlikin, et al., Phys. Rev. Lett. 101, 113902 (2008).
  7. 7. F. Scheffold and G. Maret, Phys.Rev.Lett. 81, 5800 (1998).
  8. 8. A. A. Chabanov, N. P. Tregoures, B. A. van Tiggelen, and A. Z. Genack, Phys. Rev. Lett. 92, 173901 (2004).
  9. 9. T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Ha-fezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, Rev. Mod. Phys. 91, 015006 (2019).
  10. 10. B. L. Altshuler, A. G. Aronov, D. E. Khmel’nitskii, A. I. Larkin, Quantum Theory of Solids, Mir, Moscow (1982), p. 130.
  11. 11. G. Bergmann, Phys. Rep. 107, 1 (1984).
  12. 12. M. C. W. van Rossum and T. M. Nieuwenhuizen, Rev. Mod. Phys. 71, 313 (1999).
  13. 13. P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).
  14. 14. Е. Е. Городничев, А. И. Кузовлев, Д. Б. Рогозкин, Письма в ЖЭТФ 68, 21 (1998).
  15. 15. Е. Е. Городничев, А. И. Кузовлев, Д. Б. Рогозкин, ЖЭТФ 133, 839 (2008).
  16. 16. Е. Е. Городничев, А. И. Кузовлев, Д. Б. Рогозкин, Письма в ЖЭТФ, 89, 649 (2009).
  17. 17. E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogoz-kin, JOSA A33, 95, (2016).
  18. 18. Е. Е. Городничев, А. И. Кузовлев, Д. Б. Рогозкин, Письма в ЖЭТФ 104, 155 (2016).
  19. 19. R. Lenke, R. Lehner, and G. Maret, Europhys. Lett. 52, 620 (2000).
  20. 20. R. Lenke, C. Eisenmann, D. Reinke, and G. Maret, Phys. Rev. E 66, 056610 (2002).
  21. 21. E. E. Gorodnichev and D. B. Rogozkin, J. Phys.: Conf. Ser. 1686, 012024 (2020).
  22. 22. E. E. Gorodnichev, K. A. Kondratiev, and D. B. Ro-gozkin, Phys. Rev. B 105, 104208 (2022).
  23. 23. Е. Е. Городничев, Д. Б. Рогозкин, Письма в ЖЭТФ 118, 30 (2023).
  24. 24. А. А. Голубенцев, Изв. ВУЗов. Радиофизика 27, 734 (1984).
  25. 25. А. А. Голубенцев, ЖЭТФ 86, 47 (1984).
  26. 26. F. C. MacKintosh and S. John, Phys. Rev. B 37, 1884 (1988).
  27. 27. V. Gasparian and Zh. S. Gevorkian, Phys. Rev. A 87, 053807 (2013).
  28. 28. M. A. Kozhaev, R. A. Niyazov, and V. I. Belotelov, Phys. Rev. A 95, 023819 (2017).
  29. 29. A. K. Zvezdin and V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials, Institute of Physics Publishing, (1997), p. 404.
  30. 30. M. I. Mishchenko, Electromagnetic Scattering by Particles and Particle Groups, Cambridge University Press, Cambridge (2014).
  31. 31. Е. Е. Городничев, А. И. Кузовлев, Д. Б. Рогозкин, ЖЭТФ 131, 357 (2007).
  32. 32. E. E. Gorodnichev, A.I. Kuzovlev, and D. B. Rogoz-kin, Phys. Rev. E 90, 043205 (2014).
  33. 33. Р. Ньютон, Теория рассеяния волн и частиц, Мир, Москва (1969).
  34. 34. F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D.A. Weitz, Phys. Rev. B 40, 9342 (1989).
  35. 35. D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, Phys. Rev. E 49, 1767 (1994).
  36. 36. Е. Е. Городничев, А. И. Кузовлев, Д. Б. Рогозкин, КЭ 46, 947 (2016).
  37. 37. M.K. Schmidt, J. Aizpurua, X. Zambrana-Puyalto, X. Vidal, G. Molina-Terriza, and J. J. Saenz, Phys. Rev. Lett. 114, 113902 (2015).
  38. 38. P. Laven, Appl.Opt. 42, 436 (2003).
  39. 39. A. A. Chabanov, Z. Q. Zhang, and A. Z. Genack, Phys. Rev. Lett. 90, 203903 (2003).
  40. 40. H. Cao, A. P. Mosk, and S. Rotter, Nature Physics 18, 994 (2022).
  41. 41. Л.Д. Ландау, Е. М. Лифшиц, Электродинамика сплошных сред, Наука, Москва (1982).
  42. 42. C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).
  43. 43. S. Kumari and S. Chakraborty, J. Sens. Sens. Syst. 7, 421 (2018).
  44. 44. D. Vojna, O. Slezak, A. Lucianetti, and T. Mocek, Appl. Sci. 9, 3160 (2019).
  45. 45. А. Исимару, Распространение и рассеяние волн в случайно-неоднородных средах, Мир, Москва (1981), т. 1.
  46. 46. E. P. Zege, A. P. Ivanov, and I. L. Katsev, Image Transfer Through a Scattering Medium, Springer Verlag (1991).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library