RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

ULTRAFAST EXCITON TRANSPORT IN VAN DER WAALS HETEROSTRUCTURES

PII
10.31857/S0044451024070034-1
DOI
10.31857/S0044451024070034
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 166 / Issue number 1
Pages
20-29
Abstract
Excitons in van der Waals heterostructures based on atomically thin transition metal dichalco-genides are considered as potential candidates for the formation of a superfluid state in two-dimensional systems. A number of studies reported observations of ultrafast nondiffusive prop-agation of excitons in van der Waals heterostructures, which was considered by their authors as possible evidence of collective effects in excitonic systems. In this paper, after a brief analysis of exciton propagation regimes in two-dimensional semiconductors, an alternative model of ultra-fast exciton transport is proposed, based on the formation of waveguide modes in van der Waals heterostructures and the radiation transfer by these modes. Article for the special issue of JETP dedicated to the 130th anniversary of P. L. Kapitsa.
Keywords
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
70

References

  1. 1. P. Kapitza, Nature 141, 74 (1938).
  2. 2. J. F. Allen and A. D. Misener, Nature 141, 75 (1938).
  3. 3. L. D. Landau, J. Phys. (USSR) 5, 71 (1941).
  4. 4. N. N. Bogolyubov, J. Phys. (USSR) 11, 23 (1947).
  5. 5. R. P. Feynman, Phys. Rev. 91, 1291 (1953).
  6. 6. Oliver Penrose and Lars Onsager, Phys. Rev. 104, 576 (1956).
  7. 7. L.P. Pitaevskii and S. Stringari, Bose-Einstein Condensation, Clarendon Press, Oxford (2003).
  8. 8. J. Frenkel, Phys. Rev. 37, 17 (1931).
  9. 9. G. H. Wannier, Phys. Rev. 52, 191 (1937).
  10. 10. N. F. Mott, Proc. Roy. Soc. A 167, 384 (1938).
  11. 11. E. F. Gross and N. A. Karrjew, Dokl. Akad. Nauk SSSR 84, 471 (1952).
  12. 12. S. A. Moskalenko, Sov. Phys. Solid State 4, 199 (1962).
  13. 13. J. M. Blatt, K. W. B¨oer, and W. Brandt, Phys. Rev. 126, 1691 (1962).
  14. 14. L. V. Keldysh and A. N. Kozlov, Sov. Phys. JETP 27, 521 (1968).
  15. 15. V. A. Gergel’, R. F. Kazarinov, and R. A. Suris, Sov. Phys. JETP 27, 159 (1968).
  16. 16. V. M. Agranovich and B. S. Toshich, Sov. Phys. JETP 26, 104 (1968).
  17. 17. V. L. Berezinskiˇı, Sov. Phys. JETP 32, 493 (1971).
  18. 18. J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).
  19. 19. Yu. E. Lozovik and V. I. Yudson, JETP Lett. 22, 274 (1975).
  20. 20. L. V. Butov, A. Zrenner, G. Abstreiter, G. B¨ohm, and G. Weimann, Phys. Rev. Lett. 73, 304 (1994).
  21. 21. L. V. Butov, J. Phys.: Condens. Matter. 16, R1577 (2004).
  22. 22. A. V. Gorbunov and V. B. Timofeev, JETP Lett. 84, 329 (2006).
  23. 23. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. Andr´e, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, Nature 443, 409 (2006).
  24. 24. S. Christopoulos, G. Baldassarri H¨oger von H¨ogersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butt´e, E. Feltin, J.-F. Carlin, and N. Grandjean, Phys. Rev. Lett. 98, 126405 (2007).
  25. 25. K. G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Carusotto, R. Andre, Le Si Dang, and B. DeveaudPledran, Nat. Phys. 4, 706 (2008).
  26. 26. A. Amo, D. Sanvitto, F. P. Laussy, D. Ballarini, E. del Valle, M. D. Martin, A. Lemaitre, J. Bloch, D. N. Krizhanovskii, M. S. Skolnick, C. Tejedor, and L. Vina, Nature 457, 291 (2009).
  27. 27. V. V. Belykh, N. N. Sibeldin, V. D. Kulakovskii, M. M. Glazov, M. A. Semina, C. Schneider, S. H¨ofling, M. Kamp, and A. Forchel, Phys. Rev. Lett. 110, 137402 (2013).
  28. 28. M. Stern, V. Umansky, and I. Bar-Joseph, Science 343, 55 (2014).
  29. 29. Y. Shilo, K. Cohen, B. Laikhtman, K. West, L. Pfeiffer, and R. Rapaport, Nat. Commun. 4, 2335 (2013).
  30. 30. S. Misra, M. Stern, A. Joshua, V. Umansky, and I. Bar-Joseph, Phys. Rev. Lett. 120, 047402 (2018).
  31. 31. I. Carusotto and C. Ciuti, Rev. Mod. Phys. 85, 299 (2013).
  32. 32. A. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities, Oxford Univ. Press, UK (2011).
  33. 33. Exciton Polaritons in Microcavities, ed. by V. Timofeev and D. Sanvitto, Springer, Berlin (2012).
  34. 34. M. M. Glazov and R. A. Suris, Physics-Uspekhi 63, 1051 (2020).
  35. 35. A. K. Geim and I. V. Grigorieva, Nature 499, 419 (2013).
  36. 36. A. V. Kolobov and J. Tominaga. Two-Dimensional Transition-Metal Dichalcogenides. Springer Intern. Publ., Switzerland (2016).
  37. 37. C. Schneider, M. M. Glazov, T. Korn, S. H¨ofling, and B. Urbaszek, Nat. Commun. 9, 2695 (2018).
  38. 38. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, Nano Lett. 10, 1271 (2010).
  39. 39. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).
  40. 40. M. Selig, G. Bergh¨auser, A. Raja, P. Nagler, C. Sch¨uller, T. F. Heinz, T. Korn, A. Chernikov, E. Malic, and A. Knorr, Nat. Commun. 7, 13279 (2016).
  41. 41. G. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz, X. Marie, T. Amand, and B. Urbaszek, Rev. Mod. Phys. 90, 021001 (2018).
  42. 42. M. V. Durnev and M. M. Glazov, Physics-Uspekhi 61, 825 (2018).
  43. 43. M. M. Glazov and E. L. Ivchenko, JETP Lett. 113, 7 (2021).
  44. 44. M. A. Semina and R. A. Suris, Physics-Uspekhi 65, 111 (2022).
  45. 45. M. M. Fogler, L. V. Butov, and K. S. Novoselov, Nat. Commun. 5, 4555 (2014).
  46. 46. O. L. Berman and R. Ya. Kezerashvili, Phys. Rev. B 93, 245410 (2016).
  47. 47. S. Conti, M. Van der Donck, A. Perali, F. M. Peeters, and D. Neilson, Phys. Rev. B 101, 220504 (2020).
  48. 48. A. Chernikov and M. M. Glazov, in 2D Excitonic Materials and Devices, Ch. Exciton Diffusion in 2D van der Waals Semiconductors, ed. by P. B. Deotare and Z. Mi, Elsevier, Amsterdam (2023).
  49. 49. E. Malic, R. Perea-Causin, R. Rosati, D. Erkensten, and S. Brem, Nat. Commun. 14, 3430 (2023).
  50. 50. L. H. Fowler-Gerace, D. J. Choksy, and L. V. Butov, Phys. Rev. B 104, 165302 (2021).
  51. 51. L. H. Fowler-Gerace, Zhiwen Zhou, E. A. Szwed, and L. V. Butov, preprint arXiv:2204.09760 (2022).
  52. 52. L. H. Fowler-Gerace, Zhiwen Zhou, E. A. Szwed, D. J. Choksy, and L. V. Butov, preprint arXiv:2307.00702 (2023).
  53. 53. D. Beret, L. Ren, C. Robert, L. Foussat, P. Renucci, D. Lagarde, A. Balocchi, T. Amand, B. Urbaszek, K. Watanabe, T. Taniguchi, X. Marie, and L. Lombez, Phys. Rev. B 107, 045420 (2023).
  54. 54. A. G. del Aguila, Y. R. Wong, I. Wadgaonkar, ´ A. Fieramosca, X. Liu, K. Vaklinova, S. Dal Forno, T. T. Ha Do, H. Y. Wei, K. Watanabe, T. Taniguchi, K. S. Novoselov, M. Koperski, M. Battiato, and Q. Xiong, Nat. Nano. 18, 1012 (2023).
  55. 55. M. M. Glazov, Nat. Nano. 18, 972 (2023).
  56. 56. T. Tamir, ed., Guided-Wave Optoelectronics, Springer, Berlin (1988).
  57. 57. K. J. Ebeling, Integrated Optoelectronics, Springer, Berlin (1993).
  58. 58. C. H. Henry, G. E. Blonder, and R. F. Kazarinov, J. Lightwave Technol. 7, 1530 (1989).
  59. 59. F. Fedichkin, T. Guillet, P. Valvin, B. Jouault, C. Brimont, T. Bretagnon, L. Lahourcade, N. Grandjean, P. Lefebvre, and M. Vladimirova, Phys. Rev. Appl. 6, 014011 (2016).
  60. 60. Q. Guo, B. Wu, R. Du, J. Ji, K. Wu, Y. Li, Z. Shi, S. Zhang, and H. Xu, ACS Photonics 9, 2817 (2022).
  61. 61. A. N. Osipov, I. V. Iorsh, A. V. Yulin, and I. A. Shelykh, Phys. Rev. B 108, 104202 (2023).
  62. 62. P.Back, S. Zeytinoglu, A. Ijaz, M.Kroner, and A. Imamo˘glu, Phys. Rev. Lett. 120, 037401 (2018).
  63. 63. J. Horng, Y.-H. Chou, T.-C. Chang, C.-Y. Hsu, T.-C. Lu, and H. Deng, Optica 6, 1443 (2019).
  64. 64. H. H. Fang, B. Han, C. Robert, M. A. Semina, D. Lagarde, E. Courtade, T. Taniguchi, K. Watanabe, T. Amand, B. Urbaszek, M. M. Glazov, and X. Marie, Phys. Rev. Lett. 123, 067401 (2019).
  65. 65. L. Ren, C. Robert, M. Glazov, M. Semina, T. Amand, L. Lombez, D. Lagarde, T. Taniguchi, K. Watanabe, and X. Marie, Phys. Rev. Lett. 131, 116901 (2023).
  66. 66. I. A. Eliseyev, B. R. Borodin, D. R. Kazanov, A. V. Poshakinskiy, M. Remˇskar, S. I. Pavlov, L. V.Kotova, P. A. Alekseev, A. V. Platonov, V. Yu.Davydov, and T. V. Shubina, Adv. Opt. Mater. 11, 2202782 (2023).
  67. 67. F. Cadiz, E. Courtade, C. Robert, G. Wang, Y. Shen, H. Cai, T. Taniguchi, K. Watanabe, H. Carrere, D. Lagarde, M. Manca, T. Amand, P. Renucci, S. Tongay, X. Marie, and B. Urbaszek, Phys. Rev. X 7, 021026 (2017).
  68. 68. D. Christiansen, M. Selig, G. Bergh¨auser, R. Schmidt, I. Niehues, R. Schneider, A. Arora, S. M. de Vasconcellos, R. Bratschitsch, E. Malic, and A. Knorr, Phys. Rev. Lett. 119, 187402 (2017).
  69. 69. S. Shree, M. Semina, C. Robert, B. Han, T. Amand, A. Balocchi, M. Manca, E. Courtade, X. Marie, T. Taniguchi, K. Watanabe, M. M. Glazov, and B. Urbaszek, Phys. Rev. B 98, 035302 (2018).
  70. 70. M. M. Glazov, Phys. Rev. Lett. 124, 166802 (2020).
  71. 71. M. M. Glazov, Z. A. Iakovlev, and S. RefaelyAbramson, Appl. Phys. Lett. 121, 192106 (2022).
  72. 72. K. Wagner, J. Zipfel, R. Rosati, E. Wietek, J. D. Ziegler, S. Brem, R. Perea-Caus´ın, T. Taniguchi, K. Watanabe, M. M. Glazov, E. Malic, and A. Chernikov, Phys. Rev. Lett. 127, 076801 (2021).
  73. 73. K. Wagner, Z. A. Iakovlev, J. D. Ziegler, M. Cuccu, T. Taniguchi, K. Watanabe, M. M. Glazov, and A. Chernikov, Nano Lett. 23, 4708 (2023).
  74. 74. E. Wietek, M. Florian, J. G¨oser, T. Taniguchi, K. Watanabe, A. H¨ogele, M. M. Glazov, A. Steinhoff, and A. Chernikov, Phys. Rev. Lett. 132, 016202 (2024).
  75. 75. M. Danovich, V. Z´olyomi, V. I Fal’ko, and I. L. Aleiner, 2D Mater. 3, 035011 (2016).
  76. 76. G. Moody, J. Schaibley, and X. Xu, J. Opt. Soc. Am. B 33, C39 (2016).
  77. 77. M. Manca, M. M. Glazov, C. Robert, F. Cadiz, T. Taniguchi, K. Watanabe, E. Courtade, T. Amand, P. Renucci, X. Marie, G. Wang, and B. Urbaszek, Nat. Commun. 8, 14927 (2017).
  78. 78. B. Han, C. Robert, E. Courtade, M. Manca, S. Shree, T. Amand, P. Renucci, T. Taniguchi, K. Watanabe, X. Marie, L. E. Golub, M. M. Glazov, and B. Urbaszek, Phys. Rev. X 8, 031073 (2018).
  79. 79. K.-Q. Lin, C. S. Ong, S. Bange, P. E. Faria Jr., B. Peng, J. D. Ziegler, J. Zipfel, C. B¨auml, N. Paradiso, K. Watanabe, T. Taniguchi, C. Strunk, B. Monserrat, J. Fabian, A. Chernikov, D. Y. Qiu, S. G. Louie, and J. M. Lupton, Nat. Commun. 12, 5500 (2021).
  80. 80. M. Kulig, J. Zipfel, P. Nagler, S. Blanter, C. Sch¨uller, T. Korn, N. Paradiso, M. M. Glazov, and A. Chernikov, Phys. Rev. Lett. 120, 207401 (2018).
  81. 81. D. F. Cordovilla Leon, Z. Li, S. W. Jang, and P. B. Deotare, Phys. Rev. B 100, 241401 (2019).
  82. 82. F. Tagarelli, E. Lopriore, D. Erkensten, R. PereaCaus´ın, S. Brem, J. Hagel, Z. Sun, G. Pasquale, K. Watanabe, T. Taniguchi, E. Malic, and A. Kis, Nat. Phot. 17, 615 (2023).
  83. 83. J. Zipfel, M. Kulig, R. Perea-Caus´ın, S. Brem, J. D. Ziegler, R. Rosati, T. Taniguchi, K. Watanabe, M. M. Glazov, E. Malic, and A. Chernikov, Phys. Rev. B 101, 115430 (2020).
  84. 84. R. Perea-Caus´ın, S. Brem, R. Rosati, R. Jago, M. Kulig, J. D. Ziegler, J. Zipfel, A. Chernikov, and E. Malic, Nano Lett. 19, 7317 (2019).
  85. 85. M. M. Glazov, Phys. Rev. B 100, 045426 (2019).
  86. 86. A. Filinov, N. V. Prokof’ev, and M. Bonitz, Phys. Rev. Lett. 105, 070401 (2010).
  87. 87. E. A. Kuznetsov and M. Yu. Kagan, Theor. Math. Phys. 202, 399 (2020).
  88. 88. Lucio Claudio Andreani and Franco Bassani, Phys. Rev. B 41, 7536 (1990).
  89. 89. S. V. Goupalov, E. L. Ivchenko, and A. V. Kavokin, JETP 86, 388 (1998)].
  90. 90. E. L. Ivchenko, Optical Spectroscopy of Semiconductor Nanostructures, Alpha Science, Harrow UK (2005).
  91. 91. M. M. Glazov, T. Amand, X. Marie, D. Lagarde, L. Bouet, and B. Urbaszek, Phys. Rev. B 89, 201302 (2014).
  92. 92. H. Yu, G.-B. Liu, P. Gong, X. Xu, and W. Yao, Nat. Commun. 5, 3876 (2014).
  93. 93. M. M. Glazov, E. L. Ivchenko, G. Wang, T. Amand, X. Marie, B. Urbaszek, and B. L. Liu, Phys. Stat. Sol. (b) 252, 2349 (2015).
  94. 94. V. M. Agranovich and M. D. Galanin, Electronic Excitation Energy Transfer in Condensed Matter, North-Holland Publishing Company, Amsterdam (1982).
  95. 95. A. I. Prazdnichnykh, M. M. Glazov, L. Ren, C. Robert, B. Urbaszek, and X. Marie, Phys. Rev. B 103, 085302 (2021).
  96. 96. C. Robert, M. A. Semina, F. Cadiz, M. Manca, E. Courtade, T. Taniguchi, K. Watanabe, H. Cai, S. Tongay, B. Lassagne, P. Renucci, T. Amand, X. Marie, M. M. Glazov, and B. Urbaszek, Phys. Rev. Mater. 2, 011001 (2018).
  97. 97. K. L. Koshelev, S. K. Sychev, Z. F. Sadrieva, A. A. Bogdanov, and I. V. Iorsh, Phys. Rev. B 98, 161113 (2018).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library