RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

STUDY OF DENSE LEAD PLASMA

PII
10.31857/S0044451024060154-1
DOI
10.31857/S0044451024060154
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 165 / Issue number 6
Pages
876-888
Abstract
The thermodynamic functions and electrical resistivity of dense lead plasma were assessed at specific volumes ranging from 5 to 20 times greater than the standard value, under pressures between and 4.0 hPa, and with specific internal energies 3 to 18 times higher than the energy required for The recorded dependencies were later evaluated against those estimated through a classical plasma chemical model. This research aimed to uncover the effects of non-ideality on the thermodynamic characteristics and resistivity behavior of plasma. A significant finding was that the Grüneisen coefficient for this plasma varied between 0.2 and 0.4 across the entire range of states examined. Findings from the research showed that the chemical model did not accurately reflect the energy expenditure for plasma ionization and atom excitation, underestimating it by close to a factor of two, while also overestimating the temperature by a similar proportion. The inquiry additionally disclosed that in the whole spectrum of plasma states being analyzed, “pressure ionization” was a key element, and that resistivity lessened with a decrease in specific volume along isotherms.
Keywords
strongly coupled plasma Grüneisen coefficient ionization state the caloric properties the sound speed the virial theorem
Date of publication
15.06.2024
Year of publication
2024
Number of purchasers
0
Views
103

References

  1. 1. A. W. DeSilva and A. D. Rakhel, Contrib. Plasma Phys. 45, 236 (2005).
  2. 2. A. W. DeSilva and G. B. Vunni, Phys. Rev. E 83, 037402 (2011).
  3. 3. J. Cl´erouin, P. Noiret, P. Blottiau et al., Phys. Plasmas 19, 082702 (2012).
  4. 4. P. Renaudin, C. Blancard, J. Cl´erouin et al., Phys. Rev. Lett. 91, 075002 (2003).
  5. 5. A.W. DeSilva and A. D. Rakhel, Int. J. Thermophys. 26, 1137 (2005).
  6. 6. J. Cl´erouin, P. Noiret, V.N. Korobenko, and A.D. Rakhel, Phys. Rev. B 78, 224203 (2008).
  7. 7. V.N. Korobenko and A.D. Rakhel, Phys. Rev. B 88, 134203 (2013).
  8. 8. V.N. Korobenko and A.D. Rakhel, Phys. Rev. B 75, 064208 (2007).
  9. 9. А.М. Кондратьев, В.Н. Коробенко, А.Д. Рахель, ЖЭТФ 154, 1168 (2018).
  10. 10. A.M. Kondratyev, V.N. Korobenko, and A.D. Rakhel, J. Phys.: Condens. Matter 19, 195601 (2022).
  11. 11. Л. В. Альтшулер, А. В. Бушман, М. В.Жерноклетов и др., ЖЭТФ 78, 741 (1980) [L.V. Al’tshuler, A.V, Bushman, M.V. Zhernokletov et al., Sov. Phys. JETP 51, 373 (1980)].
  12. 12. A.D. Rakhel, J. Phys.: Condens. Matter 20, 295602 (2018).
  13. 13. A.M. Kondratyev and A.D. Rakhel, Phys. Rev. B 107, 195134 (2023).
  14. 14. E.M. Apfelbaum, Contrib. Plasma Phys. 59, e201800148 (2019).
  15. 15. E.M. Apfelbaum, Contrib. Plasma Phys. 61, e202100063 (2021).
  16. 16. A.Yu. Potekhin, G. Chabrier, A. I. Chugunov, E. DeWitt, and F. J. Rogers, Phys. Rev. E 80, 047401 (2009).
  17. 17. А.Л. Хомкин, А.С. Шумихин, УФН 191, 1187 (2021).
  18. 18. V.K. Gryaznov, I. L. Iosilevskiy, and V.E. Fortov, Thermodynamic Properties of Shock-Compressed Plasmas Based on a Chemical Picture, in High-Pressure Shock Compression of Solids VII: Shock Waves and Extreme States of Matter, Springer, New York (2004), p. 437.
  19. 19. W.R. S. Hixson, M.A. Winkler, and J.W. Shaner, Physica B+C 139-140, 893 (1986).
  20. 20. Л.Д. Ландау, Е.М. Лифшиц, Теоретическая физика: Т. V. Статистическая физика. Ч. I. 5-е изд. Физматлит, Москва (2002).
  21. 21. Таблицы физических величин. Справочник, под ред. И.К. Кикоина. Атомиздат, Москва (1976).
  22. 22. Л.В. Гурвич, И.В. Вейц, В.А. Медведев и др., Термодинамические свойства индивидуальных веществ. Справочное издание в 4-х т. Наука, Москва (1979).
  23. 23. A. L. Khomkin and A. S. Shumikhin, High Temp.– High Press. 49, 143 (2020).
  24. 24. А. Ф. Никифоров, В. Г. Новиков, В.Б Уваров, Квантово-статистические модели высокотемпературной плазмы и методы расчета росселандовых пробегов и уравнений состояния, Физматлит, Москва (2000).
  25. 25. G.D. Tsakiris and K. Eidmann, J. Quant. Spectr. Rad. Transfer. 38, 353 (1987).
  26. 26. Г.Э. Норман, А.Н Старостин, ТВТ 8, 413 (1970).
  27. 27. Г.Э. Норман, А.Н Старостин, ТВТ 6, 410 (1968).
  28. 28. А.Б. Медведев, Р. Ф. Трунин, УФН 182, 829 (2012).
  29. 29. В. В Бражкин, УФН 182, 847 (2012).
  30. 30. R. Redmer, Phys. Rep. 282, 35 (1997).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library