RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

MODEL OF SOLITON TURBULENCE OF HIGH-FREQUENCY FLUCTUATIONS IN PARTIALLY MAGNETIZED PLASMA

PII
10.31857/S0044451024060142-1
DOI
10.31857/S0044451024060142
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 165 / Issue number 6
Pages
870-875
Abstract
A theoretical consideration of high-frequency microfluctuations formed by electron current across the magnetic field has been conducted. The Ginzburg–Landau equation with a nonlocal term was obtained to describe the dynamics of electron-cyclotron drift fluctuations. The thresholds for transition to turbulent regime and the boundaries within which soliton turbulence regime can be realized were determined, depending on the parameters of this equation.
Keywords
Plasma-dielectric waveguide subterahertz radiation relativistic electron beam Cherenkov effect
Date of publication
15.06.2024
Year of publication
2024
Number of purchasers
0
Views
106

References

  1. 1. N. Brenning, Space Sci.Rev. 59, 209 (1992).
  2. 2. C.M. Swenson, M.C. Kelley, F. Primdahl et al., Geophys.Res. Lett. 17, 2337 (1990).
  3. 3. O. Bolin, N. Brenning, C.M. Swenson et al., J.Geophys.Res.A 101, 19729 (1996).
  4. 4. N. Brenning, R. L. Merlino, D. Lundin et al., Phys.Rev. Lett. 103, 225003 (2009).
  5. 5. N. Brenning and D. Lundin, Phys.Plasmas 19, 093505 (2012).
  6. 6. O. Koshkarov, A. Smolyakov, Y. Raitses et al., Phys.Rev. Lett. 122, 185001 (2019).
  7. 7. K. Hara and S. Tsikata, Phys.Rev.E 102, 023202 (2020).
  8. 8. А. Смоляков, Т. Зинтель, Л. Кедель и др., Физика плазмы 46, 408 (2020).
  9. 9. S. Janhunen, A. Smolyakov, O. Chapurin et al., Phys.Plasmas 25, 011608 (2018).
  10. 10. A. Ducrocq, J.C. Adam, A. Heron et al., Phys. Plasmas 13, 102111 (2006).
  11. 11. S. I. Popel, S.V. Vladimirov, and V.N. Tsytovich, Phys.Rep. 259, 327 (1995).
  12. 12. T. Kakutani and N. Sugimoto, Phys. Fluids 17, 1617 (1974).
  13. 13. А. Найфэ, Введение в методы возмущений, Мир, Москва (1984).
  14. 14. L. Wang, A. Hakim, B. Srinivasan et al., arXiv: 2107. 09874v2 [physics.plasm-ph] (2022).
  15. 15. A. Smolyakov, O. Chapurin, W. Frias et al., Plasma Phys.Control. Fusion 59, 014041 (2017).
  16. 16. I. S. Aranson and L. Kramer, Rev.Mod.Phys. 74, 99 (2002).
  17. 17. В. Е. Захаров, А.Н. Пушкарев, В. Ф. Швец и др., Письма в ЖЭТФ 48, 79 (1988).
  18. 18. А.И. Дьяченко, В. Е. Захаров, А.Н. Пушкарев и др., ЖЭТФ 96, 2026 (1989).
  19. 19. M. Golles, S. Darmanyan, F. Lederer et al., Opt. Lett. 25, 293 (2000).
  20. 20. A. Picozzi and J. Garnier, Phys.Rev. Lett. 107, 233901 (2011).
  21. 21. S. Wabnitz, Opt. Lett. 20, 1979 (1995).
  22. 22. V. S. Grigoryan and T. S. Muradyan, J. Opt. Soc. Amer. B 8, 1757 (1991).
  23. 23. S.K. Turitsyn, Phys.Rev.E 54, R3125 (1996).
  24. 24. Б.С. Кернер, В.В. Осипов, УФН 154, 201 (1989).
  25. 25. Б.С. Кернер, В.В. Осипов, УФН 160, 2 (1990).
  26. 26. J.M. Soto-Crespo, N. Akhmediev, and K. S. Chiang, Phys. Lett.A 291, 115 (2001).
  27. 27. N. Akhmediev and J.M. Soto-Crespo, Phys. Lett.A 317, 287 (2003).
  28. 28. Н. Ахмедиев, А. Анкевич, Диссипативные солитоны, Физматлит, Москва (2008).
  29. 29. S.K. Lele, J.Comput.Phys. 103, 16 (1992).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library