- PII
- 10.31857/S0044451024060099-1
- DOI
- 10.31857/S0044451024060099
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 165 / Issue number 6
- Pages
- 827-832
- Abstract
- Systematic studies of 2G HTS wires irradiated by high-energy 167 MeV Xe ions and fluences up to 1·1012 cm−2 have been carried out. The optimal fluence value (the number of particles passing through 1 cm2 of the sample surface) for obtaining the maximum critical current at different temperatures and external magnetic fields has been determined. An increase in the external magnetic field leads to a shift of the critical current peak towards higher fluences in the whole temperature range. The results of microstructural investigations by transmission electron microscopy and X-ray diffraction methods are given. It is shown that because of irradiation ion tracks with a diameter of about 5-8 nm are formed, acting as effective pinning centers. X-ray diffraction analysis indicates a decrease in texture sharpness under the influence of irradiation.
- Keywords
- high temperature superconductor critical current irradiation fiuence critical temperature microstructure of HTS ion tracks morphology of HTS
- Date of publication
- 15.06.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 112
References
- 1. A. Markelov, A. Valikov, V. Chepikov, A. Petrzhik, B. Massalimov, P. Degtyarenko, R. Uzkih, A. Soldatenko, A. Molodyk, K. Sim, and S. Hwang, Prog. Supercond. Cryog. 21, 29 (2019).
- 2. A. Malozemoff, Annu. Rev. Mater. Res. 42, 373 (2012).
- 3. A. Abrikosov, J. Phys. Chem. Solids 2, 199 (1957).
- 4. G. Blatter, M. Feigel’man, V. Geshkenbein, A. Larkin, and V. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).
- 5. V. Selvamanickam, G. Carota, M. Funk, N. Vo, and P. Haldar, IEEE Trans. Appl. Supercond. 11, 3379 (2001).
- 6. A. Catana, R. Broom, J. Bednorz, J. Mannhart, and D. Schlom, Appl. Phys. Lett. 60 1016 (1992).
- 7. J. MacManus-Driscoll, S. Foltyn, Q. Jia, H. Wang, A. Serquis, B. Maiorov, L. Civale, Y. Lin, M. Hawley, M. Maley, and D. Peterson, Appl. Phys. Lett. 84, 5329 (2004).
- 8. N. Strickland, S. Wimbush, J. Kennedy, M. Ridgway, E. Talantsev, and N. Long, IEEE Trans. Appl. Supercond. 25, 1 (2015).
- 9. A. Erb, E. Walker, and R. Fl¨ukiger, Physica C Supercond. 258, 9 (1996).
- 10. C. Varanasi, P. Barnes, J. Burke, L. Brunke, I. Maartense, T. Haugan, E. Stinzianni, K. Dunn, and P. Haldar, Supercond. Sci. Technol. 19, 37 (2006).
- 11. A. Molodyk, S. Samoilenkov, A. Markelov, P. Degtyarenko, S. Lee, V. Petrykin, M. Gaifullin, A. Mankevich, A. Vavilov, B. Sorbom, J. Cheng, S. Garberg, L. Kesler, Z. Hartwig, S. Gavrilkin, A. Tsvetkov, T. Okada, S. Awaji, D. Abraimov, A. Francis, G. Bradford, D. Larbalestier, C. Senatore, M. Bonura, A. Pantoja, S. Wimbush, N. Strickland, and A. Vasiliev, Sci Rep. 11, 2084 (2021).
- 12. E. Suvorova, P. Degtyarenko, I. Karateev, A. Ovcharov, A. Vasiliev, V. Skuratov, and P. Buffat, J. Appl. Phys. 126, 145106 (2019).
- 13. E. Suvorova, P. Degtyarenko, A. Ovcharov, and A. Vasiliev, J. Surf. Investig. 16, 112 (2022).
- 14. C. Bean, Phys. Rev. Lett. 8, 250 (1962).
- 15. D. Larbalestier, A. Gurevich, D. Feldmann, and A. Polyanskii, Nature 414, 368 (2001).