RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

MECHANISMS OF IRON DIFFUSION IN α-Ti

PII
10.31857/S0044451024060075-1
DOI
10.31857/S0044451024060075
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 165 / Issue number 6
Pages
807-817
Abstract
Within the transition state theory and the projector augmented-wave method, the mechanisms of iron diffusion in α-Ti were studied. The formation energies of interstitial and substitution defects, as well as the barriers of iron migration in α-Ti along possible paths through both interstitial and vacancy mechanisms were calculated. It was confirmed that the most preferred position for an iron interstitial atom is a crowdion, which formation energy is only 0.17 eV higher than that of iron defect on titanium site. Analytical expressions for the temperature-dependent diffusion coefficients of iron in two crystallographic directions for the interstitial mechanism were obtained by the Landman method. In general, the coefficients of iron diffusion in α-Ti and its anisotropy are consistent with experimental data, while the corresponding diffusion coefficients for the vacancy mechanism are several orders of magnitude lower. The obtained results allow us to conclude that the anomalously fast diffusion of iron in α-Ti is due to the interstitial mechanism.
Keywords
titanium impurity diffusion diffusion mechanism density functional method transition state theory
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
70

References

  1. 1. C. Leyens and M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2003).
  2. 2. M. J. Donachie, Jr. Titanium. A Technical Guide (2nd ed.), ASM International, Materials Park, Ohio (2000).
  3. 3. M. M. Stupel, M. Bamberger, and M. Ron, J. Less-Common Met. 123, 1 (1986).
  4. 4. T. Heumann, Diffusion in Metallen: Grundlagen, Theorie, Vorgange in Reinmetallen und Legierungen, Springer-Verlag, Berlin (1992).
  5. 5. H. Mehrer, Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes, Springer, Berlin (2007).
  6. 6. Z. Li and W. Gao, in Intermetallics Research Progress, ed. by Y. N. Berdovsky, Nova Sci. Publ., New York (2008), p. 1.
  7. 7. D. P. Broom, Hydrogen Storage Materials: The Characterisation of Their Storage Properties, Springer, London (2011).
  8. 8. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
  9. 9. M. J. Gillan, J. Phys. C: Solid State Phys. 20, 3621 (1987).
  10. 10. D. Connetable, Int. J. Hydrogen Energy 44, 32307 (2019).
  11. 11. M. G. Shelyapina, Hydrogen 3, 285 (2022).
  12. 12. С. Е. Кулькова, А. В. Бакулин, Л. С. Чумакова, Физ. Мезомех. 25, 51 (2022).
  13. 13. K. Klyukin, M. G. Shelyapina, and D. Fruchart, J. Alloys Compd. 644, 371 (2015).
  14. 14. H. H. Wu, P. Wisesa, and D. R. Trinkle, Phys. Rev. B 94, 014307 (2016).
  15. 15. А. В. Бакулин, С. С. Кульков, С. Е. Кулькова, ЖЭТФ 157, 688 (2020).
  16. 16. E. Epifano and G. Hug, Comput. Mater. Sci. 174, 109475 (2020).
  17. 17. D. Connetable, A. Prillieux, C. Thenot et al., J. Phys.: Condens. Matter 32, 175702 (2020).
  18. 18. L. J. Zhang, T. I. Spiridonova, S. E. Kulkova et al., Comput. Mater. Sci. 128, 236 (2017).
  19. 19. Y. Hu, L. Suo, Q. Long et al., Vacuum 209, 111739 (2023).
  20. 20. N. Zou, H. J. Lu, and X. G. Lu, J. Alloys Compd. 803, 684 (2019).
  21. 21. G. M. Hood and R. J. Schultz, Philos. Mag. 26, 329 (1972).
  22. 22. H. Nakajima and M. Koiwa, ISIJ Int. 31, 757 (1991).
  23. 23. L. Scotti and A. Mottura, J. Chem. Phys. 142, 204308 (2015).
  24. 24. W. W. Xu, S. L. Shang, B. C. Zhou et al., Phys. Chem. Chem. Phys. 18, 16870 (2016).
  25. 25. R. C. Pasianot, R. A. Perez, V. P. Ramunni et al., J. Nucl. Mater. 392, 100 (2009).
  26. 26. R. C. Pasianot and R. A. Perez, J. Nucl. Mater. 434, 158 (2013).
  27. 27. L. J. Zhang, Z. Y. Chen, Q. M. Hu et al., J. Alloys Compd. 740, 156 (2018).
  28. 28. H. Nakajima, M. Koiwa, and S. Ono, Scr. Metall. 17, 1431 (1983).
  29. 29. H. Nakajima, M. Koiwa, Y. Minonishi et al., Trans. Jpn. Inst. Met. 24, 655 (1983).
  30. 30. H. Nakajima andM. Koiwa, in Titanium, Science and Technology, ed. by G. Lutjering, U. Zwicker, and W. Bunk, Deutsche Gesellschaft fur Metallkunde e. V., Oberursel (1984), Vol. 3, p. 1759.
  31. 31. P. E. Blochl, Phys. Rev. B 50, 17953 (1994).
  32. 32. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
  33. 33. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
  34. 34. R. M. Wood, Proc. Phys. Soc. 80, 783 (1962).
  35. 35. G. Henkelman, B. P. Uberuaga, and H. Jonsson, J. Chem. Phys. 113, 9901 (2000).
  36. 36. U. Landman and M. F. Shlesinger, Phys. Rev. B 19, 6207 (1979).
  37. 37. U. Landman and M. F. Shlesinger, Phys. Rev. B 19, 6220 (1979).
  38. 38. А. В. Бакулин, Л. С. Чумакова, С. Е. Кулькова, ЖЭТФ 160, 206 (2021).
  39. 39. A. V. Bakulin, L. S. Chumakova, and S. E. Kulkova, Intermetallics 146, 107587 (2022).
  40. 40. S. Ganeshan, L. G. Hector Jr., and Z. K. Liu, Acta Mater. 59, 3214 (2011).
  41. 41. P. B. Ghate, Phys. Rev. 133, A1167 (1964).
  42. 42. A. Y. Lozovoi, A. Alavi, and M. W. Finnis, Phys. Rev. Lett. 85, 610 (2000).
  43. 43. S. S. Kulkov, A. V. Bakulin, and S. E. Kulkova, Int. J. Hydrogen Energy 43, 43 (2018).
  44. 44. T. A. Manz and N. G. Limas, RSC Adv. 6, 47771 (2016).
  45. 45. T. A. Manz, RSC Adv. 7, 45552 (2017).
  46. 46. R. Dronskowski and P. E. Blochl, J. Phys. Chem. 97, 8617 (1993).
  47. 47. R. Nelson, C. Ertural, J. George et al., J. Comput. Chem. 41, 1931 (2020).
  48. 48. H. Wu, T. Mayeshiba, and D. Morgan, Sci. Data 3, 160054 (2016).
  49. 49. B. Silvi and A. Savin, Nature 371, 683 (1994).
  50. 50. G. Cacciamani, J. De Keyzer, R. Ferro et al., Intermetallics 14, 1312 (2006).
  51. 51. B. Medasani, M. Haranczyk, A. Canning et al., Comput. Mater. Sci. 101, 96 (2015).
  52. 52. V. O. Shestopal, Sov. Phys. Solid State 7, 2798 (1966).
  53. 53. E. Hashimoto, E. A. Smirnov, and T. Kino, J. Phys. F: Met. Phys. 14, L215 (1984).
  54. 54. N. Chen, Z. Yu, Acta Metall. Sin. 30, A112 (1994).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library