RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

ROLE OF NEPHELAUXETIC EFFECT FOR Fe2+ ION IN ZINC SELENIDE АND CADMIUM TELLURIDE MATRICES

PII
10.31857/S0044451024060014-1
DOI
10.31857/S0044451024060014
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 165 / Issue number 6
Pages
757-766
Abstract
For the electronic subsystem of transition metal ions embedded in a crystal lattice or formed a complex with ligands, an effective decrease in interelectron repulsion is observed compared to free ions, which in modern literature is referred to as the nephelauxetic effect. In this work, we study the role of the nephelauxetic effect in the Fe2+ ions electronic spectrum formation in CdTe and ZnSe matrices. Experimental assessment of the corresponding corrections was carried out based on the analysis of two transitions – the well-known 5T2(5D) → 5E(5D), enabling us to record the magnitude of the crystal field, and the less studied 3T1(3H) → 5E(5D). The discovery of the zero-phonon line of this transition in CdTe:Fe enabled us to compare the two luminescent systems properties and demonstrate that for the Fe2+ ion in CdTe the nephelauxetic effect role increases noticeably. Based on the experimental data obtained in combination with calculations within crystal field theory, we have refined the values of the Racah parameters for Fe2+ ions in CdTe and ZnSe matrices. The role of the nephelauxetic effect for Fe2+ ions in two matrices similar in structure is important both for practical problems related to IR laser systems improvement, and for resolving some fundamental questions of quantum chemistry.
Keywords
transition metal ions crystal lattice crystal field nephelauxetic effect CdTe ZnSe
Date of publication
15.06.2024
Year of publication
2024
Number of purchasers
0
Views
112

References

  1. 1. A. E. Dormidonov, K. N. Firsov, E. M. Gavrishchuk et al., Appl. Phys. B 122, 211 (2016).
  2. 2. Y. Wang, T. T. Fernandez, N. Coluccelli et al., Opt. Express, 25, 25193 (2017).
  3. 3. S. Mirov, V. Fedorov, I. Moskalev et al., J. Luminescence, 133, 268 (2013).
  4. 4. J. Cook, M. Chazot, A. Kostogiannes et al., Opt. Mater. Express 12, 1555 (2022).
  5. 5. Y. Luo, M. Yin, L. Chen et al., Opt. Mater. Express 11, 2744 (2021).
  6. 6. А. И. Белогорохов, М. И. Кулаков, В. А. Кремерман и др., ЖЭТФ 94, 174 (1988) [A. I. Belogorokhov, M. I. Kulakov, V. A. Kremerman et al., Sov. Phys. JETP 67, 1184 (1988)].
  7. 7. М. Н. Сарычев, И. В. Жевстовских, Ю. В. Коростелин, и др., ЖЭТФ 163, 96 (2023).
  8. 8. А. М. Воротынов, А. И. Панкрац, М. И. Колков, ЖЭТФ 160, 670 (2021).
  9. 9. S. B. Mirov, I. S. Moskalev, S. Vasilyev et al., IEEE Journal of Selected Topics in Quantum Electronics 24, 1 (2018).
  10. 10. J. Shee, M. Loipersberger, D. Hait et al., J. Chem. Phys. 154, 194109 (2021).
  11. 11. K. Li, H. Lian, R. Van Deun et al., Dyes and Pigments 162, 214 (2019).
  12. 12. Chr. K. Jurgensen, Progress in Inorganic Chemistry 4, 73 (1962).
  13. 13. Molecular Electronic Structures of Transition Metal Complexes II. Structure and Bonding, ed. by D. Mingos, P. Day and J. Dahl, Springer, Berlin (2011).
  14. 14. B. N. Figgis and M. A. Hitchman, Ligand field theory and its applications, Wiley–VCH, New York (2000).
  15. 15. L. Lang, M. Atanasov and F. Neese, J. Phys. Chem. A 124, 1025 (2020).
  16. 16. E.-L. Andreici Etimie, N. M. Avram, and M. G. Brik, Opt. Mater. X 16, 100188 (2022).
  17. 17. A. Suchocki, S. W. Biernacki, A. Kaminska et al., J. Lumin. 102-103, 571(2003).
  18. 18. K. P. O’Donnell, K. M. Lee, and G. D. Watkins, J.Phys.C: Solid State Phys. 16, 723 (1983).
  19. 19. J. W. Evans, T. R. Harris, B. R. Reddy et al., J. Lumin. 188, 541 (2017).
  20. 20. G. Roussos, H.-J. Schulz, M. Thiede, and J. Lumin. 31-32, 409 (1984).
  21. 21. V. V. Fedorov, S. B. Mirov, A. Gallian et al., IEEE J. Quant. Electr. 42, 907 (2006).
  22. 22. A. Salem, E. Saion, N. Al-Hada et al., Appl. Sci. 6, 278 (2016).
  23. 23. E. E. Vogel, O. Mualin, M. A. de Orue et al., Physical Review B 50, 5231 (1994).
  24. 24. S. B. Mirov, V. V. Fedorov, D. Martyshkin et al., IEEE J. Selected Topics in Quan. Electron. 21, 1601719 (2015).
  25. 25. R. I. Avetisov, S. S. Balabanov, K. N. Firsov et al., J. Crystal Growth 491, 36 (2018).
  26. 26. A. Gladilin, S. Chentsov, O. Uvarov et al., J. Appl. Phys. 126, 015702 (2019).
  27. 27. M. P. Frolov, Yu. V. Korostelin, V. I. Kozlovsky, and Ya.K. Skasyrsky, Opt. Lett. 44, 5453 (2019).
  28. 28. V. S. Krivobok, D. F. Aminev, E. E. Onishchenko et al., JETP Lett. 117, 344 (2023).
  29. 29. J. Peppers, V. V. Fedorov, and S.B. Mirov, Opt. Express 23, 4406 (2015).
  30. 30. R. Kernocker, K. Lischka, L. Palmetshofer et al., J. Crystal Growth 86, 625 (1988).
  31. 31. D. F. Aminev, A. A. Pruchkina, V. S. Krivobok et al., Opt. Mat. Express 11, 210 (2021).
  32. 32. В. С. Багаев, В. С. Кривобок, Е. Е. Онищенко и др., ЖЭТФ 140, 929 (2011).
  33. 33. S. Sugano, Y. Tanabe, and H. Kamimura, Multiplets of Transition-Metal Ions in Crystals, Academic Press, New York (1970).
  34. 34. Y. Tanabe and S. Sugano, J. Phys. Soc. Jpn. 9, 753 (1954).
  35. 35. C. E. Housecroft, A. G. Sharpe, Inorganic Chemistry (4th ed.), Prentice Hall, Hoboken (2012).
  36. 36. A. L. Tchougreff and R. Dronskowski, International Journal of Quantum Chemistry 109, 2606 (2009).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library