RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

BEHAVIOR OF MIXTURES OF ACTIVE AND PASSIVE NEMATICS IN A CONFINED TWO-DIMENSIONAL CIRCULAR DOMAIN

PII
10.31857/S0044451024050110-1
DOI
10.31857/S0044451024050110
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 165 / Issue number 5
Pages
718-724
Abstract
Using a simple molecular model of passive, active non-chiral and chiral nematics, molecular dynamics simulations were performed to study the behavior of their binary mixtures in a two- dimensional bounded circular domain. Equilibrium structures in these systems were studied under normal and tangential anchoring of particles at the boundaries. It is shown that in mixtures consisting of passive and active model particles, as well as in mixtures of active particles with different chirality, at sufficiently large self-propelling forces, the bounded domain splits into clusters predominantly consisting of particles of the same type. To characterize the degree of separation of mixtures into these clusters, a segregation parameter is introduced. The values of this parameter are calculated for different magnitudes of selfpropelling forces and chirality of model particles.
Keywords
Date of publication
15.05.2024
Year of publication
2024
Number of purchasers
0
Views
110

References

  1. 1. C. Bechinger, R. Di Leonardo, H. Lowen, C. Reichhardt, and G. Volpe, Rev. Mod. Phys. 88, 045006 (2016).
  2. 2. A. Doostmohammadi, J. Ignes-Mullo, J. Yeomans, and F. Sagues, Nat. Commun. 9, 3246 (2018).
  3. 3. M. Norton, A. Baskaran, A. Opathalage, B. Langeslay, S. Fraden, A. Baskaran, and F. Hagan, Phys. Rev. E 97, 012702 (2018).
  4. 4. A. Maitra and M. Lenz, Nat. Commun. 10, 920 (2019).
  5. 5. M. Norton, P. Grover, M. Hagan, and S. Fraden, Phys. Rev. Lett. 125, 178005 (2020).
  6. 6. H. Wioland, F. G. Woodhouse, J. Dunkel, J. O. Kessler, and R. E. Goldstein, Phys. Rev. Lett. 110, 268102 (2013).
  7. 7. H. Wioland, E. Lushi, and R. E. Goldstein, New J. Phys. 18, 075002 (2016).
  8. 8. M. Ravnik and J. M. Yeomans, Phys. Rev. Lett. 110, 026001 (2013).
  9. 9. A. Doostmohammadi and J. M. Yeomans, Eur. Phys. J. Spec. Top. 227, 2401 (2019).
  10. 10. S. Rana, M. Samsuzzaman, and A. Saha, Soft Matter 15, 8865 (2019).
  11. 11. S. Das and R. Chelakkot, Soft Matter 16, 7250 (2020).
  12. 12. S. Das, S. Ghosh, and R. Chelakkot, Phys. Rev. E 102, 032619 (2020).
  13. 13. S. Das, A. Garg, A. I. Campbell, J. Howse, A. Sen, D. Velegol, R. Golestanian, and S. J. Ebbens, Nat. Commun. 6, 8999 (2015).
  14. 14. T. Ostapenko, F. J. Schwarzendahl, T. J. Boddeker, C. T. Kreis, J. M. Cammann, G. Mazza, and O. Baumchen, Phys. Rev. Lett. 120, 068002 (2018).
  15. 15. M. Popescu, S. Dietrich, and G. Oshanin, J. Chem. Phys. 130, 94702 (2009).
  16. 16. X. Yang, M. L. Manning, and M. C. Marchetti, Soft Matter 10, 6477 (2014).
  17. 17. L. V. Mirantsev, Eur. Phys. J. E 44, 112 (2021).
  18. 18. E. J. L. de Oliveira, L. V. Mirantsev, M. L. Lyra, and I. N. de Oliveira, J. Mol. Liq. 377, 121513 (2023).
  19. 19. A. K. Abramyan, N. M. Bessonov, L. V. Mirantsev, and N. A. Reinberg, Phys. Lett. A 379, 1274 (2015).
  20. 20. A. K. Abramyan, N. M. Bessonov, L. V. Mirantsev, and A. A. Chevrychkina, Eur. Phys. J. B 91 48 (2018).
  21. 21. L. V. Mirantsev, Phys. Rev. E 100, 023106 (2019).
  22. 22. M. P. Allen and J. Tildesly, Computer Simmulations of Liquids, Clarendon Press, Oxford (1989).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library