- PII
- 10.31857/S0044451024050110-1
- DOI
- 10.31857/S0044451024050110
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 165 / Issue number 5
- Pages
- 718-724
- Abstract
- Using a simple molecular model of passive, active non-chiral and chiral nematics, molecular dynamics simulations were performed to study the behavior of their binary mixtures in a two- dimensional bounded circular domain. Equilibrium structures in these systems were studied under normal and tangential anchoring of particles at the boundaries. It is shown that in mixtures consisting of passive and active model particles, as well as in mixtures of active particles with different chirality, at sufficiently large self-propelling forces, the bounded domain splits into clusters predominantly consisting of particles of the same type. To characterize the degree of separation of mixtures into these clusters, a segregation parameter is introduced. The values of this parameter are calculated for different magnitudes of selfpropelling forces and chirality of model particles.
- Keywords
- Date of publication
- 15.05.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 110
References
- 1. C. Bechinger, R. Di Leonardo, H. Lowen, C. Reichhardt, and G. Volpe, Rev. Mod. Phys. 88, 045006 (2016).
- 2. A. Doostmohammadi, J. Ignes-Mullo, J. Yeomans, and F. Sagues, Nat. Commun. 9, 3246 (2018).
- 3. M. Norton, A. Baskaran, A. Opathalage, B. Langeslay, S. Fraden, A. Baskaran, and F. Hagan, Phys. Rev. E 97, 012702 (2018).
- 4. A. Maitra and M. Lenz, Nat. Commun. 10, 920 (2019).
- 5. M. Norton, P. Grover, M. Hagan, and S. Fraden, Phys. Rev. Lett. 125, 178005 (2020).
- 6. H. Wioland, F. G. Woodhouse, J. Dunkel, J. O. Kessler, and R. E. Goldstein, Phys. Rev. Lett. 110, 268102 (2013).
- 7. H. Wioland, E. Lushi, and R. E. Goldstein, New J. Phys. 18, 075002 (2016).
- 8. M. Ravnik and J. M. Yeomans, Phys. Rev. Lett. 110, 026001 (2013).
- 9. A. Doostmohammadi and J. M. Yeomans, Eur. Phys. J. Spec. Top. 227, 2401 (2019).
- 10. S. Rana, M. Samsuzzaman, and A. Saha, Soft Matter 15, 8865 (2019).
- 11. S. Das and R. Chelakkot, Soft Matter 16, 7250 (2020).
- 12. S. Das, S. Ghosh, and R. Chelakkot, Phys. Rev. E 102, 032619 (2020).
- 13. S. Das, A. Garg, A. I. Campbell, J. Howse, A. Sen, D. Velegol, R. Golestanian, and S. J. Ebbens, Nat. Commun. 6, 8999 (2015).
- 14. T. Ostapenko, F. J. Schwarzendahl, T. J. Boddeker, C. T. Kreis, J. M. Cammann, G. Mazza, and O. Baumchen, Phys. Rev. Lett. 120, 068002 (2018).
- 15. M. Popescu, S. Dietrich, and G. Oshanin, J. Chem. Phys. 130, 94702 (2009).
- 16. X. Yang, M. L. Manning, and M. C. Marchetti, Soft Matter 10, 6477 (2014).
- 17. L. V. Mirantsev, Eur. Phys. J. E 44, 112 (2021).
- 18. E. J. L. de Oliveira, L. V. Mirantsev, M. L. Lyra, and I. N. de Oliveira, J. Mol. Liq. 377, 121513 (2023).
- 19. A. K. Abramyan, N. M. Bessonov, L. V. Mirantsev, and N. A. Reinberg, Phys. Lett. A 379, 1274 (2015).
- 20. A. K. Abramyan, N. M. Bessonov, L. V. Mirantsev, and A. A. Chevrychkina, Eur. Phys. J. B 91 48 (2018).
- 21. L. V. Mirantsev, Phys. Rev. E 100, 023106 (2019).
- 22. M. P. Allen and J. Tildesly, Computer Simmulations of Liquids, Clarendon Press, Oxford (1989).