RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

THERMODYNAMIC CRITERION OF NEUTRAL STABILITY OF SHOCK WAVES IN HYDRODYNAMICS AND ITS IMPLICATIONS

PII
10.31857/S0044451024040138-1
DOI
10.31857/S0044451024040138
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 165 / Issue number 4
Pages
589-602
Abstract
It is shown that the Kontorovich criterion for neutral stability of relativistic shock waves (the relativistic analog of the Dyakov-Kontorovich criterion in classical hydrodynamics), after eliminating the derivative along the Taub-Hugoniot shock adiabat using relations at the relativistic shock-wave discontinuity, reduces to a constraint on the isenthalpic derivative of internal energy with respect to specific volume in the rest frame: . The obtained formulation is also valid in classical hydrodynamics. The implications of this formulation for shock waves with single-phase and two-phase final states in a medium with first-order phase transition are derived. The influence of the Riedel parameter and isochoric heat capacity on the realizability of neutrally stable shock waves is shown. In a model problem formulation, the effect of local thermodynamic non-equilibrium on the damping of perturbations of a neutrally stable shock wave is investigated.
Keywords
relativistic hydrodynamics shock wave neutral stability phase
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
5

References

  1. 1. S. P. D’yakov, The Stability of Shockwaves: Investigation of the Problem of Stability of Shock Waves in Arbitrary Media, Zh. Eksp. Teor. Fiz. 27, 288 (1954).
  2. 2. V. M. Kontorovich, Concerning the Stability of Shock Waves, Zh. Eksp. Teor. Fiz. 33, 1525 (1957).
  3. 3. J. J. Erpenbeck, Stability of Step Shocks, Phys. Fluids 5, 1181 (1962); DOI:10.1063/1.1706503.
  4. 4. V. M. Kontorovich, Stability of Shock Waves in Relativistic Hydrodynamics, Zh. Eksp. Teor. Fiz. 34, 186 (1958).
  5. 5. P. V. Tytarenko and V. I. Zhdanov, Existence and Stability of Shock Waves in Relativistic Hydrodynamics with General Equation of State, Phys. Lett. A 240, 295 (1998); DOI:10.1016/S0375-9601(97)00973-0.
  6. 6. I. V. Lomonosov, V. E. Fortov, K. V. Khishchenko, and P. R. Levashov, Shock Wave Stability in Metals, AIP Conf. Proc. 505, 85 (2000); DOI:10.1063/1.1303427.
  7. 7. I. V. Lomonosov, V. E. Fortov, K. V. Khishchenko, and P. R. Levashov, Theoretical Investigation of Shock Wave Stability in Metals, AIP Conf. Proc. 706, 91 (2004); DOI:10.1063/1.1780191.
  8. 8. I. V. Lomonosov and N. A. Tahir, Theoretical Investigation of Shock Wave Stability in Metals, Appl. Phys. Lett. 92, 101905 (2008).
  9. 9. M. Mond and I. M. Rutkevich, Spontaneous Acoustic Emission from Strong Ionizing Shocks, J. Fluid Mech. 275, 121 (1994).
  10. 10. M. Mond and I. M. Rutkevich, Spontaneous Acoustic Emission from Strong Shocks in Diatomic Gases, J. Fluid Mech. 14, 1468 (2002); DOI:10.1063/1.1458005.
  11. 11. G. Russo, Some Remarks on the Stability of Shock Waves, Meccanica 25, 83 (1990); DOI:10.1007/BF01566206.
  12. 12. J. Bates and D. Montgomery, The D’yakov–Kontorovich Instability of Shock Waves in Real Gases, Phys. Rev. Lett. 84, 1180 (2000); DOI:10.1103/PhysRevLett.84.1180.
  13. 13. A. V. Konyukhov, A. P. Likhachev, V. E. Fortov, S. I. Anisimov, and A. M. Oparin, On the Neutral Stability of a Shock Wave in Real Media, JETP Lett. 90, 18 (2009); DOI:10.1134/S0021364009130050.
  14. 14. N. Wetta, J.-C. Pain, and O. Heuz´e, D’yakov–Kontorovitch Instability of Shock Waves in Hot Plasmas, Phys. Rev. E 98 , 033205 (2018); DOI: 10.1103/PhysRevE.98.033205.
  15. 15. C. Huete and M. Vera, D’Yakov–Kontorovich Instability in Planar Reactive Shocks, J. Fluid Mech. 879, 54 (2019); DOI:10.1017/jfm.2019.942.
  16. 16. C. Huete, F. Cobos-Campos, E. Abdikamalov, and S. Bouquet, Acoustic Stability of Nonadiabatic HighEnergy-Density Shocks, Phys. Rev. Fluids 5, 113403 (2020); DOI:10.1103/PhysRevFluids.5.113403.
  17. 17. G. R. Fowles, Stimulated and Spontaneous Emission of Acoustic Waves from Shock Fronts, Phys. Fluids 24, 220 (1981); DOI:10.1063/1.863369.
  18. 18. A. M. Anile and G. Russo, Linear Stability for Plane Relativistic Shock Waves, Phys. Fluids 30, 1045 (1987); DOI:10.1063/1.866302.
  19. 19. G. Russo and A. M. Anile, Stability Properties of Relativistic Shock Waves: Basic Results, Phys. Fluids 30, 2406 (1987).
  20. 20. G. Russo, Stability Properties of Relativistic Shock Waves: Applications, Astrophys. J. 334, 707 (1988); DOI:10.1086/166872.
  21. 21. A. H. Taub, Relativistic Rankine–Hugoniot Equations, Phys. Rev. 74, 328 (1948); DOI: 10.1103/PhysRev.74.328.
  22. 22. J. L. Synge, The Relativistic Gas, Series in Physics, North-Holland Publ. Comp. (1957).
  23. 23. K. A. Bugaev and M. I. Gorenstein, Relativistic Shocks in Baryonic Matter, J. Phys. G: Nucl. Phys. 13, 1231 (1987).
  24. 24. K. A. Bugaev, M. I. Gorenstein, B. K¨ampfer, and V. I. Zhdanov, Generalized Shock Adiabatics and Relativistic Nuclear Collisions, Phys. Rev. D 40, 2903 (1989); DOI:10.1103/PhysRevD.40.2903.
  25. 25. A. V. Konyukhov, A. P. Likhachev, and V. E. Fortov, Behavior of Relativistic Shock Waves in Nuclear Matter, High. Temp. 53, 622 (2015); DOI:10.1134/S0018151X15050181.
  26. 26. J. Cleymans, R. V. Gavai, and E. Suhonen, Quarks and Gluons at High Temperatures and Densities, Phys. Rep. 130, 217 (1986); DOI:10.1016/0370-1573(86)90169-9.
  27. 27. B. E. Poling, J. M. Prausnitz, and J. P. O’Connell, Properties of Gases and Liquids, McGraw-Hill Education (2001).
  28. 28. М. Д. Вайсман, Термодинамика парожидкостных потоков, Энергия. Ленинградское отделение, Москва (1977).
  29. 29. A. G. Kulikovskii, A. T. Il’ichev, A. P. Chugainova, and V. A. Shargatov, On the Structure Stability of a Neutrally Stable Shock Wave in a Gas and on Spontaneous Emission of Perturbations, J. Exp. Theor. Phys. 131, 481 (2020); DOI:10.1134/s1063776120090186.
  30. 30. A. G. Kulikovskii, A. T. Il’ichev, A. P. Chugainova, and V. A. Shargatov, Spontaneously Radiating Shock Waves, Doklady Physics 64, 293 (2019); DOI: 10.1134/s1028335819070036.
  31. 31. C. S. Gardner, Comment on Stability of Step Shocks, Phys. Fluids 6, 1366 (1963); DOI:10.1063/1.1706917.
  32. 32. N. M. Kuznetsov, The Theory of Shock-Wave Stability, Zh. Eksp. Teor. Fiz. 88, 470 (1985).
  33. 33. N. M. Kuznetsov, Stability of Shock Waves, Sov. Phys. Usp. 32, 993 (1989); DOI:10.1070/PU1989v032n11ABEH002777.
  34. 34. G. R. Fowles and A. F. P. Houwing, Instabilities of Shock and Detonation Waves, Phys. Fluids 27, 1982 (1984); DOI:10.1063/1.864853.
  35. 35. A. V. Konyukhov, A. P. Likhachev, V. E. Fortov, S. I. Anisimov, and A. M. Oparin, Stability and Ambiguous Representation of Shock Wave Discontinuity in Thermodynamically Nonideal Media, JETP Lett. 90, 25 (2009); DOI:10.1063/1.3295149.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library