RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

TRONG HALL EFFECT NONLINEARITY IN MACROSCOPICALLY MODULATED TWO-DIMENSIONAL SYSTEM

PII
10.31857/S0044451024040114-1
DOI
10.31857/S0044451024040114
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 165 / Issue number 4
Pages
572-580
Abstract
We study experimentally the low-temperature conductive properties of double-gate two dimensional array of islands in metal-oxide-semiconductor structure. The system appears to be a highly tunable two- dimensional metamaterial with diffusive transport and macroscopic modulation. In particular, we reveal several effects in magnetic field and gate voltages dependencies of the Hall coefficient, and Shubnikov-de Haas oscillations. In moderate magnetic fields 1T, the Hall effect carrier density demonstrates seemingly counterintuitive nonmonotonic behavior as function of gate voltage. This behavior, however, can be qualitatively described by mean-field approach for effective media. In small magnetic fields the strongest unexpected temperature- and gate-dependent Hall effect nonlinearity emerges, that can not be described by mean-field effective media theory. We argue that this effect can be related to weak-localization phenomena and current redistribution in inhomogeneous media. In the quantized magnetic field an unusual splitting of Shubnikov-de Haas resistivity minimum is observed. Our observation should stimulate studies of tunable modulated two-dimensional systems.
Keywords
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
5

References

  1. 1. D. Weiss, M. L. Roukes, A. Menschig et al., Phys. Rev. Lett. 66, 2790 (1991).
  2. 2. D. Weiss, K. Richter, A. Menschig et al., Phys. Rev. Lett. 70, 4118 (1993).
  3. 3. D. A. Kozlov, Z. D. Kvon, A. E. Plotnikov et al., JETP Lett. 89, 80 (2009).
  4. 4. K. Tsukagoshi, S. Wakayama, K. Oto et al., Phys. Rev. B 52, 8344 (1995).
  5. 5. A. Dorn, Th. Ihn, K. Ensslin et al., Phys. Rev. B 70, 205306 (2004).
  6. 6. G. M. Minkov, A. A. Sherstobitov, A. V. Germanenko, and O. E. Rut, Phys. Rev. B 78, 195319 (2008).
  7. 7. N. E. Staley, N. Ray, M. A. Kastner et al., Phys. Rev. B 90, 195443 (2014).
  8. 8. S. Goswami, M. A. Aamir, C. Siegert et al., Phys. Rev. B 85, 075427 (2012).
  9. 9. V. A. Tkachenko, O. A. Tkachenko, G. M. Minkov, and A. A. Sherstobitov, JETP Lett. 104, 473 (2016).
  10. 10. F. Nihey, S. W. Hwang and K. Nakamura, Phys. Rev. B 51, 4649 (1995).
  11. 11. Y. Iye, M. Ueki, A. Endo, and S. Katsumoto, J. Phys. Soc. Jpn. 73, 3370 (2004).
  12. 12. R. Yagi, M. Shimomura, F. Tahara et al., J. Phys. Soc. Jpn. 81, 063707 (2012).
  13. 13. Zh. Han, A. Allain, H. Arjmandi-Tash et al., Nat. Phys. 10, 380 (2014).
  14. 14. H. Maier, J. Ziegler, R. Fischer et al., Nat. Comm. 8, 2023 (2017).
  15. 15. C. R. Dean, L. Wang, P. Maher et al., Nature 497, 598 (2013).
  16. 16. Y. Cao, V. Fatemi, A. Demir et al., Nature 556, 80 (2018).
  17. 17. Y. Cao, V. Fatemi, Sh. Fang et al., Nature 556, 43 (2018).
  18. 18. A. Yu. Kuntsevich, A. V. Shupletsov, and M. S. Nunuparov, Phys. Rev. B 93, 205407 (2016).
  19. 19. M. L. Roukes, A. Scherer, S. J. Allen et al., Phys. Rev. Lett. 59, 3011 (1987).
  20. 20. S. de Haan, A. Lorke, R. Hennig et al., Phys. Rev. B 60, 8845 (1999).
  21. 21. R. H. Bube, App. Phys. Lett. 13, 136 (1968).
  22. 22. J. Heleskivi and T. Salo, J. Appl. Phys. 43, 740 (1972).
  23. 23. C. J. Adkins, J. Phys. C: Sol. St. Phys. 12, 3389 (1979).
  24. 24. A. Yu. Kuntsevich, A. V. Shupletsov, and A. L. Rakhmanov, Phys. Rev. B 102, 155426 (2020).
  25. 25. B. Sanvee, J. Schluck, M. Cerchez et al., Phys. Rev. B 108, 035301 (2023).
  26. 26. B. Abeles, P. Sheng, M. D. Coutts, and Y. Arie, Adv. in Phys. 24, 407 (1975).
  27. 27. Ts. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).
  28. 28. Л. Д. Ландау, Л. П. Питаевский, Е. М. Лифшиц, Электродинамика сплошных сред, Физматлит, Москва (1992).
  29. 29. А. П. Виноградов, Электродинамика композитных материалов, URSS, Москва (2001).
  30. 30. A. Yu. Kuntsevich, L. A. Morgun, and V. M. Pudalov, Phys. Rev. B 87, 205406 (2013).
  31. 31. C. W. Beenakker and H. van Houten, Phys. Rev. Lett. 63, 1857 (1989).
  32. 32. H. Fukuyama, J. Phys. Soc. Jpn. 49, 644 (1980).
  33. 33. B. L. Altshuler, D. Khmel’nitzkii, A. I. Larkin, and P. A. Lee, Phys. Rev. B 22, 5142 (1980).
  34. 34. M. Rahimi, S. Anissimova, M. R. Sakr et al., Phys. Rev. Lett. 91, 116402 (2003).
  35. 35. G. M. Minkov, A. V. Germanenko, and I. V. Gornyi, Phys. Rev. B 70, 245423 (2004).
  36. 36. A. Isihara and L. Smrcka, J. Phys. C: Sol. St. Phys. 19, 6777 (1986).
  37. 37. M. M. Parish and P. B. Littlewood, Nature 426, 162 (2003).
  38. 38. V. M. Pudalov, JETP Lett. 116, 456 (2022)
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library