RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

REGIMES OF ELECTRONIC TRANSPORT IN DOPED InAs NANOWIRE

PII
10.31857/S004445102403012X-1
DOI
10.31857/S004445102403012X
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 165 / Issue number 3
Pages
424-437
Abstract
We report on the low temperature measurements of the magnetotransport in Si-doped InAs quantum wire in the presence of a charged tip of an atomic force microscope serving as a mobile gate, i.e. scanning gate microscopy (SGM). By altering the carrier concentration with back gate voltage, we transfer the wire through several transport regimes: from residual Coulomb blockade to nonlinear resonance regime, followed by linear resonance regime and, finally, to almost homogeneous diffusion regime. We demonstrate direct relations between patterns measured with scanning gate microscopy and spectra of universal conductance fluctuations in the dependence of conductance on magnetic field (R-1(B)). Additionally, a clear sign of fractal behavior of R-1(B) curve is observed for non-linear and linear resonance transport regimes.
Keywords
Scanning gate microscopy semiconducting nanowires mesoscopics
Date of publication
15.03.2024
Year of publication
2024
Number of purchasers
0
Views
96

References

  1. 1. S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge Univ. Press, Cambridge (1995).
  2. 2. B. L. Altshuler and A. G. Aronov, in Electron-Electron Interactions in Disordered Conductors, ed. by A. J. Efros and M. Pollack, Elsevier Sci., North-Holland (1985).
  3. 3. А. А. Жуков, К. Фольк, Т. Шеперс, ЖЭТФ 161, 116 (2022) [A. A. Zhukov, Ch. Volk, and Th. Sch¨apers, JETP 134, 95 (2022)].
  4. 4. Y. Imry, Introduction to Mesoscopic Physics, Oxford Univ. Press, Oxford (1997).
  5. 5. B. L. Altshuler, Pisma v Zh. Eksp. Teor. Fiz. 41 , 530 (1985) [JETP Lett. 41, 648 (1985)].
  6. 6. P. A. Lee, A. D. Stone, and H. Fukuyama, Phys. Rev. B 35, 1039 (1987).
  7. 7. C. W. J. Beenakker and H. van Houten, Phys. Rev. B 37, 6544 (1988).
  8. 8. R. Ketzmerick, Phys. Rev. B 54, 10841 (1996).
  9. 9. B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, San Francisco (1982).
  10. 10. M. Jannsen, Int. J. Mod. Phys. B 08, 943 (1994).
  11. 11. F. Evers and A. D. Mirlin, Rev. Mod. Phys. 80, 1355 (2008).
  12. 12. A. H. Hegger, B. Huckestein, K. Hecker, M. Janssen, A. Freimuth, G. Reckziegel, and R. Tuzinski, Phys. Rev. Lett. 77, 3885 (1996).
  13. 13. C. A. Marlow, R. P. Taylor, T. P. Martin, B. C. Scannell, H. Linke, M. S. Fairbanks, G. D. R. Hall, I. Shorubalko, L. Samuelson, T. M. Fromhold, C. V. Brown, B. Hackens, S. Faniel, C. Gustin, V. Bayot, X. Wallart, S. Bollaert, and A. Cappy, Phys. Rev. B 73, 195318 (2006).
  14. 14. K. R. Amin, S. S. Ray, N. Pal et al., Commun. Phys. 1, 1 (2018); https://doi.org/10.1038/s42005-017-0001-4.
  15. 15. S. Wirths, K. Weis, A. Winden, K. Sladek, Ch. Volk, S. Alagha, T. E. Weirich, M. von der Ahe, H. Hardtdegen, H. Lu¨th, N. Demarina, D. Gru¨tzmacher, and Th. Sch¨apers, J. Appl. Phys. 110, 053709 (2011).
  16. 16. M. Akabori, K. Sladek, H. Hardtdegen, Th. Sch¨apers, and D. Gru¨tzmacher, J. Cryst. Growth 311, 3813 (2009).
  17. 17. A. A. Zhukov, Instrum. Exp. Tech. 51, 130 (2008).
  18. 18. K. Weis, St. Wirths, A. Winden, K. Sladek, H. Hardtdegen, H. Lu¨th, D. Gru¨tzmacher, and Th. Sch¨apers, Nanotechnology 25, 135203 (2014).
  19. 19. O. Wunnicke, Appl. Phys. Lett. 89, 083102 (2006).
  20. 20. V. F. Gantmakher, Electrons and Disorder in Solids, Oxford Univ. Press, Oxford (2005).
  21. 21. M. T. Woodside and P. L. McEuen, Science 296, 1098 (2002).
  22. 22. A. A. Zhukov, Ch. Volk, A. Winden, H. Hardtdegen, and Th. Sch¨apers, J. Phys. Condens. Matter 26, 165304 (2014).
  23. 23. A. C. Bleszynski, F. A. Zwanenburg, R. M. Westervelt, A. L. Roest, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Nano Lett. 7, 2559 (2005).
  24. 24. S. Dhara, H. S. Solanki, V. Singh, A. Narayanan, P. Chaudhari, M. Gokhale, A. Bhattacharya, and M. M. Deshmukh, Phys. Rev. B 79, 121311(R) (2009).
  25. 25. P. Roulleau, T. Choi, S. Riedi, T. Heinzel, I. Shorubalko, T. Ihn, and K. Ensslin, Phys. Rev. B 81, 155449 (2010).
  26. 26. Ch. Bl¨omers, M. I. Lepsa, M. Luysberg, D. Gru¨tzmacher, H. Lu¨th, and Th. Sch¨apers, Nano Lett. 11, 3550 (2011).
  27. 27. E. E. Boyd, K. Storm, L. Samuelson, and R. M. Westervelt, Nanotechnology 22, 185201 (2011).
  28. 28. L. B. Wang, J. K. Guo, N. Kang, D. Pan, S. Li, D. Fan, J. Zhao, and H. Q. Xu, Appl. Phys. Lett. 106, 173105 (2015).
  29. 29. K. Takase, Y. Ashikawa, G. Zhang, K. Tateno, and S. Sasaki, Sci. Rep. 7, 930 (2017).
  30. 30. D. Liang, J. Du, and X. P. A. Gao, Phys. Rev. B 81, 153304 (2010).
  31. 31. A. Makarovski, J. Liu, and G. Finkelstein, Phys. Rev. Lett. 99, 066801 (2007).
  32. 32. L. B. Wang, D. Pan, G. Y. Huang, J. Zhao, N. Kang, and H. Q. Xu, Nanotechnology 30, 124001 (2019).
  33. 33. H. Lu¨th, Ch. Bl¨omers, Th. Richter, J. Wensorra, S. Est´evez Hern´andez, G. Petersen, M. Lepsa, Th. Sch¨apers, M. Marso, M. Indlekofer, R. Calarco, R. Demarina, and D. Gru¨tzmacher, Phys. Stat. Sol. C 7, 386 (2010).
  34. 34. H. Haucke et al., Phys. Rev. B 41, 12454 (1990).
  35. 35. A. A. Zhukov et al., JETP 115, 1062 (2012).
  36. 36. A. A. Zhukov et al., JETP 116, 138 (2013).
  37. 37. A. A. Zhukov, Ch. Volk, A. Winden, H. Hardtdegen, and Th. Sch¨apers, J. Phys. Cond. Matt. 26, 165304 (2014).
  38. 38. B. L. Altshuler, Y. Gefen, A. Kamenev, and L. S. Levitov, Phys. Rev. Lett. 78, 2803 (1997).
  39. 39. A. D. Mirlin and Y. V. Fyodorov, Phys. Rev. B 56, 13393 (1997).
  40. 40. B. L. Altshuler, V. E. Kravtsov, and I. V. Lerner, JETP Lett. 45, 199 (1987).
  41. 41. B. A. Muzykantskii and D. E. Khmelnitskii, Phys. Rev. B 51, 5480 (1995).
  42. 42. A. D. Mirlin, JETP Lett. 62, 603 (1995).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library