- PII
- 10.31857/S0044451024030064-1
- DOI
- 10.31857/S0044451024030064
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 165 / Issue number 3
- Pages
- 367-373
- Abstract
- Classical molecular dynamics simulation for a number of single crystals ofFeNiCrCoCu system showed that with increasing entropy of mixing the average formation enthalpy of interstitial defects and their shear susceptibility decreases monotonically. For interstitial defects in crystals and defect subsystems of glasses of the same composition, has been established that the average deviator components of dipole tensors decrease with increasing entropy of mixing, and the decrease occurs more strongly in the high-entropy region. All this may indicate the presence of a correlation between mixing entropy and properties of the defect subsystem of crystalline and glassy states.
- Keywords
- high-entropy alloys mixing entropy molecular dynamics interstitial defects metallic glasses
- Date of publication
- 15.03.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 94
References
- 1. S. C. Glade, R. Busch, D. S. Lee, and W. L. Johnson,J. Appl. Phys. 87, 7242 (2000).
- 2. X. Ji and Y. Pan, J. Non-Cryst. Solids 353, 2443 (2007).
- 3. S. Guo, Q. Hu, C. Ng, and C. T. Liu, Intermetallics 41, 96 (2013).
- 4. H.-R. Jiang, B. Bochtler, S. S. Riegler, X.-S. Wei, N. Neuber, M. Frey, I. Gallino, R. Busch, and J. Shen, J. Alloys Compd. 844, 156126 (2020).
- 5. A. S. Makarov, G. V. Afonin, R. A. Konchakov, V. A. Khonik, J. C. Qiao, A. N. Vasiliev, and N. P. Kobelev, Scripta Mater. 239, 115783 (2024).
- 6. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, Adv. Eng. Mater. 6, 299 (2004).
- 7. E. P. George, D. Raabe and R. O. Ritchie, Nat. Rev. Mater. 4, 515 (2019).
- 8. Y. F. Ye, Q. Wang, J. Lu, C. T. Liu, and Y. Yang, Materials Today 19, 349 (2016).
- 9. D. Kumar, Progress in Materials Science 136, 101106 (2023).
- 10. W. Chen, Nature Commun. 14, 2856 (2023).
- 11. Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw, and Z. P. Lu, Progress in Materials Science 61, 1 (2014).
- 12. R. E. Ryltsev, S. Kh. Estemirova, V. S. Gaviko, D. A. Yagodin, V. A. Bykov, E.V. Sterkhov, L. A. Cherepanova, I. S. Sipatov, I. A. Balyakin, and S. A. Uporov, Materialia 21, 101311 (2022).
- 13. S. Uporov, S. Kh. Estemirova, V. A. Bykov, D. A. Zamyatin, and R. E. Ryltsev, Intermetallics 122, 106802 (2020).
- 14. S. A. Uporov, R. E. Ryltsev, S. Kh. Estemirova, E. V. Sterkhov, and N. M. Chtchelkatchev, Scripta Materialia 193, 108 (2021).
- 15. Z. Li, S. Zhao, R. O. Ritchie, and M. A. Meyers, Progress in Materials Science 102, 296 (2019).
- 16. S. A. Uporov, R. E. Ryltsev, V. A. Bykov, S. Kh. Estemirova, and D. . Zamyatin, J. Alloys and Compounds 820, 153228 (2020).
- 17. S. A. Uporov, R. E. Ryltsev, V. A. Sidorov, S. Kh. Estemirova, E. V. Sterkhov, I. A. Balyakin, and N. M. Chtchelkatchev, Intermetallics 140, 107394 (2022).
- 18. S. A. Uporov, R. E. Ryltsev, V. A. Bykov, N. S. Uporova, S. Kh. Estemirova, and N. M. Chtchelkatchev, J. of Alloys and Compounds 854, 157170 (2021).
- 19. H. W. Sheng, W. K. Luo, F. M. Alamgir, and E. Ma, Nature 439, 419 (2006).
- 20. Y. Q. Cheng and E. Ma, Prog. Mater. Sci. 56, 379 (2011).
- 21. W. H. Wang, Prog. Mater. Sci. 57, 487 (2012).
- 22. A. Hirata, P. Guan, T. Fujita, Y. Hirotsu, A. Inoue, A. R. Yavari, T. Sakurai, and M. Chen, Nature Materials 10, 28 (2011).
- 23. A. Hirata, L. J. Kang, T. Fujita, B. Klumov, K. Matsue, M. Kotani, A. R. Yavari, and M. W. Chen, Science 341, 376 (2013).
- 24. F. Spaepen, Acta Metall. 25, 407 (1977).
- 25. M. L. Falk and J. S. Langer, Phys. Rev. E 57, 7192 (1998).
- 26. Y. C. Hu, P. F. Guan, M. Z. Li, C. T. Liu, Y. Yang, H. Y. Bai, and W. H. Wang, Phys. Rev. B 93, 214202 (2016).
- 27. T. Egami, S. J. Poon, Z. Zhang, and V. Keppens, Phys. Rev. B 76, 024203 (2007).
- 28. M. D. Ediger, Annu. Rev. Phys. Chem. 51, 99128 (2000).
- 29. H. L. Peng, M. Z. Li, and W. H. Wang, Phys. Rev. Lett. 106, 135503 (2011).
- 30. H. Zhang, C. Zhong, J. F. Douglas, X. Wang, Q. Cao, D. Zhang, and J.-Z. Jiang, J. Chem. Phys. 142, 164506 (2015).
- 31. J. C. Qiao and J. M. Pelletier, J. Mater. Sci. Technol. 30, 523 (2014).
- 32. Р. А. Кончаков, Н. П. Кобелев, В. А. Хоник, А. С. Макаров, ФТТ 58(2), 209 (2016).
- 33. Р. А. Кончаков, А. С. Макаров, А. С. Аронин, Н. П. Кобелев, В. А. Хоник, Письма в ЖЭТФ 115(5), 308 (2022).
- 34. R. A. Konchakov, A. S. Makarov, N. P. Kobelev, A. M. Glezer, G. Wilde, and V. A. Khonik, J. Phys.: Condens. Matter 31, 385703 (2019).
- 35. Р. А. Кончаков, А. С. Макаров, А. С. Аронин, Н. П. Кобелев, В. А. Хоник, Письма в ЖЭТФ 113, 341 (2021).
- 36. J. Plimpton, J. Comp. Phys. 117, 1 (1995).
- 37. D. Farkas and A. Caro, J. Mater. Res. 33, 3218 (2018).
- 38. М. А. Кретова, Р. А. Кончаков, Н. П. Кобелев, В. А. Хоник, Письма в ЖЭТФ 111(12), 806 (2020).
- 39. A. V. Granato, Eur. Phys. J. B 87, 18 (2014).
- 40. D. A. Freedman, D. Roundy, and T. A. Arias, Phys. Rev. B 80, 064108 (2009).
- 41. W. G. Wolfer, Fundamental Properties of Defects in Metals, Comprehensive Nuclear Materials, ed. by R. J. M. Konings, Elsevier, Amsterdam (2012).
- 42. Y. Zhang, C. Z. Wang, F. Zhang, M. I. Mendelev, M. J. Kramer, and K. M. Ho, Appl. Phys. Lett. 105, 151910 (2014).
- 43. T. Brink, L. Koch, and K. Albe, Phys. Rev. B 94, 224203 (2016).
- 44. Н. П. Кобелев, В. А. Хоник, УФН 193, 717 (2023).
- 45. A. Stukowski, Modelling Simul. Mater. Sci. Eng. 18, 015012 (2010).
- 46. B. A. Klumov, R. E. Ryltsev, and N. M. Chtchelkatchev, JETP Letters 104, 546 (2016).