RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

CHARACTERISTICS OF DEFECTS AND ENTROPY OF MIXING IN HIGH-ENTROPY ALLOYS OF THE FeNiCrCoCu SYSTEM

PII
10.31857/S0044451024030064-1
DOI
10.31857/S0044451024030064
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 165 / Issue number 3
Pages
367-373
Abstract
Classical molecular dynamics simulation for a number of single crystals ofFeNiCrCoCu system showed that with increasing entropy of mixing the average formation enthalpy of interstitial defects and their shear susceptibility decreases monotonically. For interstitial defects in crystals and defect subsystems of glasses of the same composition, has been established that the average deviator components of dipole tensors decrease with increasing entropy of mixing, and the decrease occurs more strongly in the high-entropy region. All this may indicate the presence of a correlation between mixing entropy and properties of the defect subsystem of crystalline and glassy states.
Keywords
high-entropy alloys mixing entropy molecular dynamics interstitial defects metallic glasses
Date of publication
15.03.2024
Year of publication
2024
Number of purchasers
0
Views
94

References

  1. 1. S. C. Glade, R. Busch, D. S. Lee, and W. L. Johnson,J. Appl. Phys. 87, 7242 (2000).
  2. 2. X. Ji and Y. Pan, J. Non-Cryst. Solids 353, 2443 (2007).
  3. 3. S. Guo, Q. Hu, C. Ng, and C. T. Liu, Intermetallics 41, 96 (2013).
  4. 4. H.-R. Jiang, B. Bochtler, S. S. Riegler, X.-S. Wei, N. Neuber, M. Frey, I. Gallino, R. Busch, and J. Shen, J. Alloys Compd. 844, 156126 (2020).
  5. 5. A. S. Makarov, G. V. Afonin, R. A. Konchakov, V. A. Khonik, J. C. Qiao, A. N. Vasiliev, and N. P. Kobelev, Scripta Mater. 239, 115783 (2024).
  6. 6. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, Adv. Eng. Mater. 6, 299 (2004).
  7. 7. E. P. George, D. Raabe and R. O. Ritchie, Nat. Rev. Mater. 4, 515 (2019).
  8. 8. Y. F. Ye, Q. Wang, J. Lu, C. T. Liu, and Y. Yang, Materials Today 19, 349 (2016).
  9. 9. D. Kumar, Progress in Materials Science 136, 101106 (2023).
  10. 10. W. Chen, Nature Commun. 14, 2856 (2023).
  11. 11. Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw, and Z. P. Lu, Progress in Materials Science 61, 1 (2014).
  12. 12. R. E. Ryltsev, S. Kh. Estemirova, V. S. Gaviko, D. A. Yagodin, V. A. Bykov, E.V. Sterkhov, L. A. Cherepanova, I. S. Sipatov, I. A. Balyakin, and S. A. Uporov, Materialia 21, 101311 (2022).
  13. 13. S. Uporov, S. Kh. Estemirova, V. A. Bykov, D. A. Zamyatin, and R. E. Ryltsev, Intermetallics 122, 106802 (2020).
  14. 14. S. A. Uporov, R. E. Ryltsev, S. Kh. Estemirova, E. V. Sterkhov, and N. M. Chtchelkatchev, Scripta Materialia 193, 108 (2021).
  15. 15. Z. Li, S. Zhao, R. O. Ritchie, and M. A. Meyers, Progress in Materials Science 102, 296 (2019).
  16. 16. S. A. Uporov, R. E. Ryltsev, V. A. Bykov, S. Kh. Estemirova, and D. . Zamyatin, J. Alloys and Compounds 820, 153228 (2020).
  17. 17. S. A. Uporov, R. E. Ryltsev, V. A. Sidorov, S. Kh. Estemirova, E. V. Sterkhov, I. A. Balyakin, and N. M. Chtchelkatchev, Intermetallics 140, 107394 (2022).
  18. 18. S. A. Uporov, R. E. Ryltsev, V. A. Bykov, N. S. Uporova, S. Kh. Estemirova, and N. M. Chtchelkatchev, J. of Alloys and Compounds 854, 157170 (2021).
  19. 19. H. W. Sheng, W. K. Luo, F. M. Alamgir, and E. Ma, Nature 439, 419 (2006).
  20. 20. Y. Q. Cheng and E. Ma, Prog. Mater. Sci. 56, 379 (2011).
  21. 21. W. H. Wang, Prog. Mater. Sci. 57, 487 (2012).
  22. 22. A. Hirata, P. Guan, T. Fujita, Y. Hirotsu, A. Inoue, A. R. Yavari, T. Sakurai, and M. Chen, Nature Materials 10, 28 (2011).
  23. 23. A. Hirata, L. J. Kang, T. Fujita, B. Klumov, K. Matsue, M. Kotani, A. R. Yavari, and M. W. Chen, Science 341, 376 (2013).
  24. 24. F. Spaepen, Acta Metall. 25, 407 (1977).
  25. 25. M. L. Falk and J. S. Langer, Phys. Rev. E 57, 7192 (1998).
  26. 26. Y. C. Hu, P. F. Guan, M. Z. Li, C. T. Liu, Y. Yang, H. Y. Bai, and W. H. Wang, Phys. Rev. B 93, 214202 (2016).
  27. 27. T. Egami, S. J. Poon, Z. Zhang, and V. Keppens, Phys. Rev. B 76, 024203 (2007).
  28. 28. M. D. Ediger, Annu. Rev. Phys. Chem. 51, 99128 (2000).
  29. 29. H. L. Peng, M. Z. Li, and W. H. Wang, Phys. Rev. Lett. 106, 135503 (2011).
  30. 30. H. Zhang, C. Zhong, J. F. Douglas, X. Wang, Q. Cao, D. Zhang, and J.-Z. Jiang, J. Chem. Phys. 142, 164506 (2015).
  31. 31. J. C. Qiao and J. M. Pelletier, J. Mater. Sci. Technol. 30, 523 (2014).
  32. 32. Р. А. Кончаков, Н. П. Кобелев, В. А. Хоник, А. С. Макаров, ФТТ 58(2), 209 (2016).
  33. 33. Р. А. Кончаков, А. С. Макаров, А. С. Аронин, Н. П. Кобелев, В. А. Хоник, Письма в ЖЭТФ 115(5), 308 (2022).
  34. 34. R. A. Konchakov, A. S. Makarov, N. P. Kobelev, A. M. Glezer, G. Wilde, and V. A. Khonik, J. Phys.: Condens. Matter 31, 385703 (2019).
  35. 35. Р. А. Кончаков, А. С. Макаров, А. С. Аронин, Н. П. Кобелев, В. А. Хоник, Письма в ЖЭТФ 113, 341 (2021).
  36. 36. J. Plimpton, J. Comp. Phys. 117, 1 (1995).
  37. 37. D. Farkas and A. Caro, J. Mater. Res. 33, 3218 (2018).
  38. 38. М. А. Кретова, Р. А. Кончаков, Н. П. Кобелев, В. А. Хоник, Письма в ЖЭТФ 111(12), 806 (2020).
  39. 39. A. V. Granato, Eur. Phys. J. B 87, 18 (2014).
  40. 40. D. A. Freedman, D. Roundy, and T. A. Arias, Phys. Rev. B 80, 064108 (2009).
  41. 41. W. G. Wolfer, Fundamental Properties of Defects in Metals, Comprehensive Nuclear Materials, ed. by R. J. M. Konings, Elsevier, Amsterdam (2012).
  42. 42. Y. Zhang, C. Z. Wang, F. Zhang, M. I. Mendelev, M. J. Kramer, and K. M. Ho, Appl. Phys. Lett. 105, 151910 (2014).
  43. 43. T. Brink, L. Koch, and K. Albe, Phys. Rev. B 94, 224203 (2016).
  44. 44. Н. П. Кобелев, В. А. Хоник, УФН 193, 717 (2023).
  45. 45. A. Stukowski, Modelling Simul. Mater. Sci. Eng. 18, 015012 (2010).
  46. 46. B. A. Klumov, R. E. Ryltsev, and N. M. Chtchelkatchev, JETP Letters 104, 546 (2016).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library