RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

COLLAPSE OF MINOR MAGNETIC HYSTERESIS LOOP IN GRANULAR HIGH-TC SUPERCONDUCTOR YBa2Cu3O7−δ

PII
10.31857/S0044451024020111-1
DOI
10.31857/S0044451024020111
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 165 / Issue number 2
Pages
258-265
Abstract
The evolution of the magnetic hysteresis loops of the granular high-temperature superconductor YBa2Cu3O7−δ with varying the maximum external applied field Hmax has been experimentally studied. In the range of weak fields (up to ∼10 Oe at a temperature of 78 K), the small hysteresis loop is observed, associated with diamagnetism and the penetration of Josephson vortices into the subsystem of intergranular boundaries, which is a Josephson medium. With further growth of Hmax, the larger magnetization hysteresis loop appears, associated with the penetration of Abrikosov vortices into superconducting granules. When analyzing the experimental data, a non-trivial fact was discovered: the magnetic response from the subsystem of intergranular boundaries becomes less noticeable with increasing Hmax, and at a certain value of Hmax this response disappears. This occurs even though the small hysteresis loop at small values of Hmax is comparable to the magnetic response of superconducting granules. The described evolution of magnetic hysteresis is explained using the concept of an effective field in an intergranular medium. The total magnetic field in the subsystem of intergranular boundaries is determined not only by the external field, but also by closing fields from the magnetic moments of superconducting granules. In other words, the interaction between the superconducting subsystems of granules and intergranular boundaries leads to the small hysteresis loop in sufficiently small fields, and to its complete disappearance with increasing magnetization modulus of superconducting granules.
Keywords
Granular HTS YBCO effective field in the intergrain medium magnetization hysteresis, trapped magnetic flux Abrikosov vortex Josephson vortex
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
62

References

  1. 1. Ch. Yao and Y. Ma, Science 24, 102541 (2021).
  2. 2. Д.М. Гохфельд, М. Р. Коблишка, А. Коблишка-Венева, ФММ 121, 1026 (2020).
  3. 3. G. Wang, M. J. Raine, and D.P. Hampshire, Supercond. Sci.Technol. 31, 024001 (2018).
  4. 4. J. Huang and H. Wang, Supercond. Sci.Technol. 30, 114004 (2017).
  5. 5. J. Zhang, H. Wu, G. Zhao, L. Han, and Jun Zhang, Nanomaterials 12, 4000 (2022).
  6. 6. A.P. Menushenkov, A.A. Ivanov, O.V. Chernysheva, I.A. Rudnev, M.A. Osipov, A.R. Kaul, V.N. Chepikov, O. Mathon, V. Monteseguro, and F. d’Acapito, Supercond. Sci.Technol. 35, 065006 (2022).
  7. 7. S. Eley, A. Glatz, and R. Willa, J.Appl.Phys. 130, 050901 (2021).
  8. 8. Y. Yeshurun, A.P. Malozemoff, and A. Shaulov, Rev.Mod. Phys. 68, 911 (1996).
  9. 9. А.М. Балагуров, Л.Г. Мамсурова, И.А. Бобриков, То Тхань Доан, В.Ю. Помякушин, К.С. Пигальский, Н. Г. Трусевич, А.А. Вишнёв, ЖЭТФ 141, 1144 (2012).
  10. 10. Н. Г. Трусевич, С.Ю. Гаврилкин, Л.И. Трахтенберг, ЖЭТФ 164, 413 (2023).
  11. 11. Т.В. Сухарева, В.А. Финкель, Письма в ЖЭТФ 108, 249 (2018).
  12. 12. В.А. Кашурников, А.Н. Максимова, И.А. Руднев, А.Н. Мороз, ФММ 122, 466 (2021).
  13. 13. M.R. Koblischka, S.P. Kumar Naik, A. Koblischka-Veneva, D.M. Gokhfeld, and M. Murakami, Supercond. Sci.Technol. 33, 044008 (2020).
  14. 14. Д.М. Гохфельд, Н.Е. Савицкая, С.И. Попков, Н.Д. Кузьмичев, М.А. Васютин, Д.А. Балаев, ЖЭТФ 161, 833 (2022).
  15. 15. Д. А. Балаев, Д. М. Гохфельд, С. И. Попков, К.А.Шайхутдинов, Л.А. Клинкова, Л.Н.Жерихина, А.М. Цховребов, ЖЭТФ 145, 120 (2014).
  16. 16. Д. А. Балаев, А. А. Дубровский, С. И. Попков, К.А. Шайхутдинов, О.Н. Мартьянов, М.И. Петров, ЖЭТФ 137, 664 (2010).
  17. 17. Т.В. Сухарева, В.А. Финкель,ЖТФ 80, 68 (2010).
  18. 18. Т.В. Сухарева, В.А. Финкель, ФТТ 52, 424 (2010).
  19. 19. Л. Г. Мамсурова, Н. Г. Трусевич, К.С. Пигальский, А. А. Вишнёв, С. Х. Гаджимагомедов, Ж.Х. Мурлиева, Д.К. Палчаев, А.С. Бугаев, Хим.Физика 37, 58 (2018).
  20. 20. A.A. Lepeshev, G. S. Patrin, G.Y. Yurkin, A.D. Vasiliev, I.V. Nemtsev, D.M. Gokhfeld, A.D. Balaev, V.G. Demin, E. P. Bachurina, I.V. Karpov, A.V. Ushakov, L.Y. Fedorov, L.A. Irtyugo, and M. I. Petrov, J. Supercond.Nov.Magn. 31, 3841 (2018).
  21. 21. И.А.Руднев, А.И. Подливаев, Д.А.Абин, С.В. Покровский, А. С. Стариковский, Р. Г. Батулин, П.А. Федин, К.Е. Прянишников, Т.В. Кулевой, ФТТ 65 388 (2023).
  22. 22. А.Н. Максимова, И.А. Руднев, В.А. Кашурников, А.Н. Мороз, ФТТ 65, 531 (2023).
  23. 23. D. M. Gokhfeld, S. V. Semenov, I. V. Nemtsev, I. S. Yakimov, and D.A. Balaev, J. Supercond.Nov. Magn. 35, 2679 (2022).
  24. 24. E. Taylan Koparan, A. Surdu, A. Awawdeh, A. Sidorenko, and E. Yanmaz, J. Supercond.Nov.Magn. 25, 1761 (2012).
  25. 25. C. P. Bean, Rev.Mod. Phys. 36, 31 (1964).
  26. 26. C. Navau, N. Del-Valle, and A. Sanchez, IEEE Trans.Appl. Supercond. 23, 8201023 (2013).
  27. 27. L. Ji, M. S. Rzchowski, N. Anand, and M. Tinkham, Phys.Rev.B 47, 470 (1993).
  28. 28. M. Mahel’ and J. Pivarc, Physica C 308, 147 (1998).
  29. 29. В. В. Вальков, Б.П. Хрусталев, ЖЭТФ 107, 1221 (1995).
  30. 30. E.V. Blinov, Yu.P. Stepanov, K.B. Traito, L. S. Vlasenko, R. Laiho, and E. Lahderanta, ЖЭТФ 106, 790 (1994).
  31. 31. Д.М. Гохфельд, ФТТ 56, 2298 (2014).
  32. 32. G. E. Gough, M. S. Colclough, D. A. O’Connor, E. Wellhoffer, N.McN. Alford, and T.W. Button, Cryogenics 31, 119 (1991).
  33. 33. J. Jung, M.-K. Mohamed, S. C. Cheng, and J. P. Franck, Phys.Rev.B 42, 6181 (1990).
  34. 34. F. Perez, X. Obradors, J. Fontcuberta, X. Bozec, and A. Fert, Supercond. Sci.Technol. 9, 161 (1996).
  35. 35. B. Andrzejewski, E. Guilmeau, and C. Simon, Supercond. Sci.Technol. 14, 904 (2001).
  36. 36. L. Burlachkov, A.E. Koshelev, and V.M. Vinokur, Phys.Rev.B 54, 6750 (1996).
  37. 37. Ф. Ф. Терновский, Л.Н.Шехата, ЖЭТФ 62, 2297 (1972).
  38. 38. А.А. Елистратов, И.Л. Максимов, ФТТ 42, 196 (2000).
  39. 39. Э. Б. Сонин, Письма в ЖЭТФ 47, 415 (1988).
  40. 40. J. Paasi, A. Tuohimaa, and J.-T. Eriksson, Physica C 259, 10 (1996).
  41. 41. G. Ravikumar and P. Chaddah, Phys.Rev.B. 39, 4704 (1989).
  42. 42. P. Chaddah, K.V. Bhagwat, and G. Ravikumar, Physica C 159 570 (1989).
  43. 43. M. Zehetmayer, Phys.Rev.B. 80, 104512 (2009).
  44. 44. R. Lal, Physica C. 470, 281 (2010).
  45. 45. D.M. Gokhfeld, J. Supercond.Nov.Magn. 36, 1089 (2023).
  46. 46. C. B¨ohmer, G. Brandst¨atter, and H.W. Weber, Supercond. Sci.Technol. 10, A1 (1997).
  47. 47. R. Liang, P. Dosanjh, D.A. Bonn, and W.N. Hardy, A. J. Berlinsky, Phys.Rev.B 50, 4212 (1994).
  48. 48. D. Daghero, P. Mazzetti, A. Stepanescu, and P. Tura, Phys.Rev.B 66, 11478 (2002).
  49. 49. Д.А. Балаев, Д.М. Гохфельд, А.А. Дубровский, С.И. Попков, К.А.Шайхутдинов, М.И. Петров, ЖЭТФ 132, 1340 (2007).
  50. 50. Д.А. Балаев, А.А. Дубровский, К.А.Шайхутдинов, С.И. Попков, Д.М. Гохфельд, Ю.С. Гохфельд, М.И. Петров, ЖЭТФ 135, 271 (2009).
  51. 51. D.A. Balaev, S. I. Popkov, E. I. Sabitova, S.V. Semenov, K.A. Shaykhutdinov, A.V. Shabanov, and M. I. Petrov, J.Appl.Phys. 110, 093918 (2011).
  52. 52. A. Altinkok, K. Kilic, M. Olutas, and A. Kilic, J. Supercond.Nov.Magn. 26, 3085 (2013).
  53. 53. D.A. Balaev, S.V. Semenov, and M.A. Pochekutov, J.Appl.Phys. 122, 123902 (2017).
  54. 54. S.V. Semenov and D.A. Balaev, Physica C 550, 19 (2018).
  55. 55. S.V. Semenov and D.A. Balaev, J. Supercond.Nov. Magn. 32, 2409 (2019).
  56. 56. S.V. Semenov, A.D. Balaev, and D.A. Balaev, J.Appl.Phys. 125, 033903 (2019).
  57. 57. С. В. Семёнов, Д.А. Балаев, ФТТ 62, 1008 (2020).
  58. 58. С. В. Семёнов, Д.А. Балаев, М.И. Петров, ФТТ 63), 854 (2021).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library