RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

NANOCRYSTAL SHAPE ANISOTROPY DETERMINATION USING EXAFS

PII
10.31857/S0044451024010073-1
DOI
10.31857/S0044451024010073
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 165 / Issue number 1
Pages
65-72
Abstract
Using the set of the nanocrystals (NC) having the rectangular parallelepiped shape and a cubic crystal structure of the zinc-blende type as model system, the possibilities of determining the NC shape anisotropy using the polarized EXAFS technique were demonstrated. It was shown that the effective value of the coordination number of absorbing atoms in an NC with anisotropic shape depends on its size and the orientation of the X-ray radiation polarization vector relative to the NC surface. The effective values of the coordination numbers of the first coordination sphere of atoms in NCs having different size and surface composition were modeled. Taking into account the influence of the experimental error of the EXAFS method the possibilities of the model applicability for analysis of the real systems with NC were analyzed.
Keywords
Nanocrystals EXAFS Shape anisotropy
Date of publication
15.01.2024
Year of publication
2024
Number of purchasers
0
Views
85

References

  1. 1. M. A. Cotta, ACS Appl. Nano Mater. 3, 4920 (2020).
  2. 2. D. S. Abramkin and V. V. Atuchin, Nanomaterials12, 3794 (2022).
  3. 3. W. C. Chao, T. H. Chiang, Y. C. Liu, Z. X. Huang,C. C. Liao, C. H. Chu, C. H. Wang, H. W. Tseng, W. Y. Hung, and P. T. Chou, Commun. Mater. 2, 96 (2021).
  4. 4. Al. L. Efros, M. Rosen, M. Kuno, M. Nirmal,D. J. Norris, and M. Bawendi, Phys. Rev. B 54, 4843 (1996).
  5. 5. E. S. Smotkin, C. Lee, A. J. Bard, A. Campion,M. A. Fox, T. E. Mallouk, S. E. Webber, and J. M. White, Chem. Phys. Lett. 152, 265 (1988).
  6. 6. J. J. Shiang, S. H. Risbud, and A. P. Alivisatos, J. Chem. Phys. 98, 8432 (1993).
  7. 7. P. Facci and M. P. Montana, Solid State Commun.108, 5 (1998).
  8. 8. A. Aleksandrov, V. G. Mansurov, and K. S. Zhuravlev, Physica E 75, 309 (2016).
  9. 9. V. G. Mansurov, Yu. G. Galittsyn, A. Yu. Nikitin,K. S. Zhuravlev, and Ph. Vennegues, Phys. Stat. Sol. (c) 3, 1548 (2006).
  10. 10. S. Hovmoller, X. Zou, and T. E. Weirich, Adv. ImaginElectron Phys. 123, 257 (2002).
  11. 11. A. V. Nabok, A. K. Ray, and A. K. Hassan, J. Appl.Phys. 88, 1333 (2000).
  12. 12. T. M. Usher, D. Olds, J. Liku, and K. Page, ActaCryst. A74, 322 (2018).
  13. 13. C. L. Farrow, C. Shi, P. Juhas, X. Peng, and S. J. L. Billinge, J. Appl. Crystallogr, 47, 561 (2014).
  14. 14. C. Shi, E. L. Redmond, A. Mazaheripour, P. Juhas,T. F. Fuller, and S. J. L. Billinge, J. Phys. Chem. C 117, 7226 (2013).
  15. 15. M. Khalkhali, Q. Liu, H. Zeng, and H. Zhang, Sci.Rep. 5, 14267 (2015).
  16. 16. A. Jentys, Phys. Chem. Chem. Phys. 1, 4059 (1999).
  17. 17. G. Agostini, A. Piovano, L. Bertinetti, R. Pellegrini,G. Leofanti, E. Groppo, and C. Lamberti, J. Phys. Chem. C 118, 4085, (2014).
  18. 18. R. B. Gregor and F. W. Lytle, J. Catal. 63, 476, (1980).
  19. 19. M. Shirai, T. Inoue, H. Onishi, K. Asakura, and Y. Iwasawa, J. Catal. 145, 159 (1994).
  20. 20. C. Giansante and I. Infante, J. Phys. Chem. Lett. 8, 8209 (2017).
  21. 21. C. J. P. Clark and W. R. Flavell, Chem. Rec. 18, 1 (2018).
  22. 22. N. S. Marinkovic, K. Sasaki, and R. R. Adzic, J.Electrochem. Soc. 165, J3222 (2018).
  23. 23. D. Kido and K. Asakura, Acc. Mater. Surf. Res. 5, 148 (2020).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library