RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

SPONTANEOUS PARAMETRIC DOWN-CONVERSION IN BIAXIAL CRYSTALS: PECULIARITIES OF THE POLARIZATION STATE

PII
10.31857/S0044451024010048-1
DOI
10.31857/S0044451024010048
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 165 / Issue number 1
Pages
32-42
Abstract
A consistent analysis of the quantum state of polarization of SPDC radiation is presented and the peculiarities of the quantum state of polarization of SPDC in biaxial nonlinear optical crystals are considered. It is shown that the SPDC polarization deviation angle can exceed 15°, and the angle between the signal and idler wave vectors D can exceed 30°. Estimates of the curvature of the cone formed by SPDC radiation in biaxial crystals are also given. The influence of SPDC polarization deviation in a non-collinear mode on the entanglement of biphoton states generated by a double-crystal scheme is analyzed, it is shown that Tangle of the generated quantum state can deteriorate by 6%, and conditions are identified under which entanglement can be completely restored.
Keywords
Spontaneous parametric down-conversion polarization deviation biaxial crystals double-crystal scheme
Date of publication
15.01.2024
Year of publication
2024
Number of purchasers
0
Views
100

References

  1. 1. Д. Н. Клышко, Письма в ЖЭТФ 6, 490 (1967)
  2. 2. C. Zhang et al., Adv. Quant. Technol. 4, 2000132 (2021).
  3. 3. S. V. Vintskevich, D. A. Grigoriev, and M. V. Fedorov, Laser Phys. Lett. 16, 065203 (2019).
  4. 4. G. Brida, M. Genovese, and M. Gramegna, Laser Phys. Lett. 3, 115 (2005).
  5. 5. A. N. Penin and A. V. Sergienko, Appl. Opt. 30, 3582 (1991).
  6. 6. П. П. Гостев, Д. П. Агапов, А. В. Демин, Измерительная техника 12, 27 (2018)
  7. 7. P. A. Prudkovskii, P. A. Safronenkov, and G. Kh. Kitaeva, Opt. Lett. 47, 4842 (2022).
  8. 8. J. Matthews, X.-Q. Zhou, H. Cable et al., NPJ Quant. Inf. 2, 1 (2016).
  9. 9. C. Couteau, Contemp. Phys. 59, 291 (2018).
  10. 10. D. Bouwmeester, J.-W. Pan, M. Daniell et al., Phys. Rev. Lett. 82, 1345 (1999).
  11. 11. H.-S. Zhong, Y. Li, W. Li et al., Phys. Rev. Lett. 121, 250505 (2018).
  12. 12. P.-G. Kwiat, E. Waks, and A. G. White, Phys. Rev. A 60, R773 (1999).
  13. 13. C. E. Kuklewicz, M. Fiorentino, G. Messin et al., Phys. Rev. A 69, 013807 (2004).
  14. 14. F. N. C. Wong, J. H. Shapiro, and T. Kim, Laser Phys. 16, 1517 (2006).
  15. 15. M. Barbieri, C. Cinelli, F. de Martini et al., Laser Phys. 16, 1439 (2006).
  16. 16. K. A. Kuznetsov, E. I. Malkova, and R. V. Zakharov, Phys. Rev. A 101, 053843 (2020).
  17. 17. К. Г. Катамадзе, С. П. Кулик, ЖЭТФ 139, 26 (2011)
  18. 18. N. A. Borshchevskaya, F. Just, K. G. Katamadze et al., Laser Phys. Lett. 16, 085207 (2019).
  19. 19. М. В. Чехова, О. А. Шумилкина, Письма в ЖЭТФ 91, 718 (2010)
  20. 20. R. Rangarajan, L. E. Vicent, A. B. U’Ren, and P. G. Kwiat, J. Mod. Opt. 58, 318 (2011).
  21. 21. M. V. Fedorov, Phys. Rev. A 93, 033830 (2016).
  22. 22. M. Reichert, H. Defienne, and J. W. Fleischer, Scientific Reports 8, 7925 (2018).
  23. 23. F. Just, A. Cavanna, M. V. Chekhova, and G. Leuchs, New J. Phys. 15, 083015 (2013).
  24. 24. D. N. Frolovtsev and S. A. Magnitskiy, Phys. Wave Phenomena 25, 180 (2017).
  25. 25. D. N. Frolovtsev and S. A. Magnitskiy, EPJ Web of Conf. 220, 03016 (2019).
  26. 26. A. Migdall, JOSA B 14, 1093 (1997)
  27. 27. Д. Ю. Степанов, В. Д. Шигорин, Г. П. Шипуло, КЭ 11, 1957 (1984)
  28. 28. J. Q. Yao and T. S. Fahlen, J. Appl. Phys. 55, 65 (1984).
  29. 29. N. Boeuf, D. A. Branning, I. Chaperot et al., Opt. Eng. 39, 1016 (2000).
  30. 30. G.-W. Huo, T.-Y. Zhan, R.-G. Wan et al., Proc. SPIE 8333, 261 (2012).
  31. 31. R. Akbari and Major, Laser Phys. 23, 035401 (2013).
  32. 32. A. S. Chirkin, P. P. Gostev, D. P. Agapov, and S. A. Magnitskiy, Laser Phys. Lett. 15, 115404 (2018).
  33. 33. S. A. Magnitskiy, D. P. Agapov, and A. S. Chirkin, Opt. Lett. 47, 754 (2022).
  34. 34. Д. А. Балакин, А. В. Белинский, ЖЭТФ 160, 35 (2021)
  35. 35. Л. Д. Ландау, Е. М. Лифшиц, Электродинамика сплошных сред, Гостехиздат, Москва (1957)
  36. 36. М. Борн, Э. Вольф, Основы оптики, Наука, Москва (1973)
  37. 37. В. Г. Дмитриев, Л. В. Тарасов, Прикладная нелинейная оптика, Физматлит, Москва (2004)
  38. 38. E. Kreuzig, Advanced Engineering Mathematics, Willey (1972).
  39. 39. Л. А. Кривицкий, С. П. Кулик, Г. А. Масленников, М. В. Чехова, КЭ 35, 69 (2005)
  40. 40. E. W. Weisstein, Rotation Matrix, Wolfram Research (2003).
  41. 41. Л. Мандель, Э. Вольф, Оптическая когерент- ность и квантовая оптика, Физматлит, Москва (2000)
  42. 42. K. Kato, IEEE J. Quant. Electron. 22, 1013 (1986).
  43. 43. H. Hellwig, J. Liebertz, and L. Bohaty´, J. Appl. Phys. 88, 240 (2000).
  44. 44. D. N. Frolovtsev and S. A. Magnitskiy, Proc. of ICLO, 1 (2020).
  45. 45. W. K. Wooters, Quant. Inf. Comput. 1, 27 (2001).
  46. 46. N. A. Peters, T.-C. Wei, and P. G. Kwiat, Phys. Rev. A 70, 052309 (2004).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library