RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

INTENSE HIGH HARMONIC GENERATION IN FULLERENE MOLECULE C180

PII
10.31857/S0044451024010036-1
DOI
10.31857/S0044451024010036
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 165 / Issue number 1
Pages
25-31
Abstract
Investigation of high‑order harmonic generation (HHG) in the large fullerene C180 molecule under intense laser field is presented. To model the С180 molecule and its interaction with the laser field, we employ the tight‑binding mean‑field approach. Our detailed analysis of the HHG power spectrum reveals the multiphoton resonant nature of harmonic generation, shedding light on the underlying quantum processes involved. We examine the dependence of cutoff harmonics on both laser intensity and frequency, providing valuable insights into the optimal conditions for enhancing HHG in C180. We demonstrate that the C180 molecule exhibits a significantly stronger high harmonic intensity compared to the more widely studied C60 fullerene.
Keywords
graphene quantum dot intense wave many particle column interactions fullerene
Date of publication
15.01.2024
Year of publication
2024
Number of purchasers
0
Views
98

References

  1. 1. P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).
  2. 2. M. Lewenstein, P. Balcou, M. Y. Ivanov et al., Phys. Rev. A 49, 2117 (1994).
  3. 3. H. K. Avetissian, Relativistic Nonlinear Electrodynamics: The QED Vacuum and Matter in Super- Strong Radiation Fields, Springer, New York (2015).
  4. 4. P. B. Corkum and F. Krausz, Nature Phys. 3, 381 (2007).
  5. 5. F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).
  6. 6. E. H. Falcao and F. Wudl, J. Chem. Technol. Biotechnol. 82, 524 (2007).
  7. 7. S. K. Tiwari, V. Kumar, A. Huczko, et al., Critical Rev. Sol. State and Mater. Sci. 41, 257 (2016).
  8. 8. R. E. Smalley, Rev. Mod. Phys. 69, 723 (1997).
  9. 9. H. W. Kroto, J. R. Heath, S. C. O’Brien et al., Nature 318, 162 (1985).
  10. 10. H. Kroto and K. McKay, Nature 331, 328 (1988).
  11. 11. D. York, J. P. Lu, and W. Yang, Phys. Rev. B 49, 8526 (1994).
  12. 12. G. E. Scuseria, Chem. Phys. Lett. 243, 193 (1995).
  13. 13. G. E. Scuseria, Science 271, 942 (1996).
  14. 14. S. Itoh, P. Ordejon, D. A. Drabold, and R. M. Martin, Phys. Rev. B 53, 2132 (1996).
  15. 15. C. H. Xu and G. E. Scuseria, Chem. Phys. Lett. 262, 219 (1996).
  16. 16. P. W. Dunk, N. K. Kaiser, C. L. Hendrickson et al., Nature Commun. 3, 855 (2012).
  17. 17. J. W. Martin, G. J. McIntosh, R. Aru et al., Carbon 125, 132 (2017).
  18. 18. S. Wang, Q. Chang, G. Zhang et al., Front. Chem. 8, 607712 (2020).
  19. 19. E. Ghavanloo, H. Rai-Tabar, A. Kausar et al., Phys. Rep. 996, 1 (2023).
  20. 20. T.D. Donnelly, T. Ditmire, K. Neuman et al., Phys. Rev. Lett. 76, 2472 (1996).
  21. 21. C. Vozzi, M. Nisoli, J. Caumes et al., Appl. Phys. Lett. 86 (2005).
  22. 22. O. Smirnova, Y. Mairesse, S. Patchkovski et al., Nature 460, 972 (2009).
  23. 23. Б.Р. Авчян, А. Г. Казарян, К. А. Сарг- сян, Х. В. Седракян, ЖЭТФ 161, 155 (2022).
  24. 24. B.R. Avchyan, A.G. Ghazaryan, S.S. Israelyan, and K. V. Sedrakian, J. Nanophot. 16, 036001 (2022).
  25. 25. Б.Р. Авчян, А. Г. Казарян, К. А. Саргсян, Х. В. Седракян, Письма в ЖЭТФ 116, 426 (2022).
  26. 26. S. Gnawali, R. Ghimire, K. R. Maga et al., Phys. Rev. B 106, 075149 (2022).
  27. 27. R. Ganeev, L.E. Bom, J. Abdul-Hadi et al., Phys. Rev. Lett. 102, 013903 (2009).
  28. 28. R. Ganeev, L.E. Bom, M. Wong et al., Phys. Rev. A 80, 043808 (2009).
  29. 29. G.P. Zhang, Phys. Rev. Lett. 95, 047401 (2005).
  30. 30. G.P. Zhang and T. F. George, Phys. Rev. A 74, 023811 (2006).
  31. 31. G.P. Zhang and Y.H. Bai, Phys. Rev. B 101, 081412(R) (2020).
  32. 32. H.K. Avetissian, A.G. Ghazaryan, and G.F. Mkrtchian, Phys. Rev. B 104, 125436 (2021).
  33. 33. H.K. Avetissian, S. Sukiasyan, H.H. Matevosyan, and G.F. Mkrtchian, Results Phys. 53, 106951 (2003), https://doi.org/10.1016/j.rinp.2023.106951, arXiv:2304.04208 (2023).
  34. 34. R.L. Martin and J.P. Ritchie, Phys. Rev. B 48, 4845 (1993).
  35. 35. G. Zhang, Phys. Rev. B 56, 9189 (1997).
  36. 36. P. W. Fowler and D. E. Manolopoulos, An Atlas of Fullerenes, Courier Corporation, New York (2007).
  37. 37. P. Schwerdtfeger, L. Wirz, and J. Avery, J. Comput. Chem. 34, 1508 (2013).
  38. 38. G.P. Zhang, M.S. Si, M. Murakami et al., Nature Commun. 9, 3031 (2018).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library