RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

Spin Pumping by a Moving Domain Wall at the Interface of an Antiferromagnetic Insulator and a Two-Dimensional Metal

PII
10.31857/S0044451023120179-1
DOI
10.31857/S0044451023120179
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 164 / Issue number 6
Pages
1039-1055
Abstract
A domain wall (DW) which moves parallel to a magnetically compensated interface between an antiferromagnetic insulator (AFMI) and a two-dimensional (2D) metal can pump spin polarization into the metal. It is assumed that localized spins of a collinear AFMI interact with itinerant electrons through their exchange interaction on the interface. We employed the Keldysh formalism of Green’s functions for electrons which experience potential and spin-orbit scattering on random impurities. This formalism allows a unified analysis of spin pumping, spin diffusion and spin relaxation effects on a 2D electron gas. It is shown that the pumping of a nonstaggered magnetization into the metal film takes place in the second order with respect to the interface exchange interaction. At sufficiently weak spin relaxation this pumping effect can be much stronger than the first-order effect of the Pauli magnetism which is produced by the small nonstaggered exchange field of the DW. It is shown that the pumped polarization is sensitive to the geometry of the electron’s Fermi surface and increases when the wave vector of the staggered magnetization approaches the nesting vector of the Fermi surface. In a disordered diffusive electron gas the induced spin polarization follows the motion of the domain wall. It is distributed asymmetrically around the DW over a distance which can be much larger than the DW width.
Keywords
Date of publication
15.12.2023
Year of publication
2023
Number of purchasers
0
Views
40

References

  1. 1. V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, and Y. Tserkovnyak, Rev. Mod. Phys. 90, 015005 (2018).
  2. 2. O. Gomonay, V. Baltz, A. Brataas, and Y. Tserkovnyak, Nat. Phys. 14, 213 (2018).
  3. 3. H. Yan, Z. Feng, P. Qin, X. Zhou, H. Guo, X. Wang, H. Chen, X. Zhang, H. Wu, C. Jiang, and Z. Liu, Adv. Materials 32, 1905603 (2020).
  4. 4. P. Wadley, B. Howells, J. ˇZelezn'y, C. Andrews, V. Hills, R. P. Campion, V. Novak, K. Olejnik, F. Maccherozzi, S. S. Dhesi, S. Y. Martin, T. Wagner, J. Wunderlich, F. Freimuth, Y. Mokrousov, J. Kunes, J. S. Chauhan, M. J. Grzybowski, A. W. Rushforth, K. W. Edmonds, B. L. Gallagher, and T. Jungwirth, Science 351, 587 (2016).
  5. 5. J. ˇZelezn'y, H. Gao, K. V'yborn'y, J. Zemen, J. Maˇsek, A. Manchon, J. Wunderlich, J. Sinova, and T. Jungwirth, Phys. Rev. Lett. 113, 157201 (2014).
  6. 6. R. Cheng, J. Xiao, Q. Niu, and A. Brataas, Phys. Rev. Lett. 113, 057601 (2014).
  7. 7. H. B. M. Saidaoui, A. Manchon, and X. Waintal, Phys. Rev. B 89, 174430 (2014).
  8. 8. A. C. Swaving and R. A. Duine, Phys. Rev. B 83, 054428 (2011).
  9. 9. S. Takei, B. I. Halperin, A. Yacoby, and Y. Tserkovnyak, Phys. Rev. B 90, 094408 (2014).
  10. 10. A. S. N'unez, R. A. Duine, P. M. Haney, and A. H. MacDonald, Phys. Rev. B 73, 214426 (2006).
  11. 11. Y. Ohnuma, H. Adachi, E. Saitoh, and S. Maekawa, Phys. Rev. B 89, 174417 (2014).
  12. 12. P. Zhang, C. T. Chou, H. Yun, B. C. McGoldrick, J. T. Hou, K. A. Mkhoyan, and L. Liu, arXiv:2201.04732.
  13. 13. E. Cogulu, H. Zhang, N. N. Statuto, Y. Cheng, F. Yang, R. Cheng, and A. D. Kent, arXiv:2112.12238.
  14. 14. K. A. Omari, L. X. Barton, O. Amin, R. P. Campion, A. W. Rushforth, P. Wadley, and K. W. Edmonds, J. Appl. Phys. 127, 193906 (2020).
  15. 15. L. Frangou, S. Oyarzun, S. Auffret, L. Vila, S. Gambarelli, and V. Baltz, Phys. Rev. Lett. 116, 077203 (2016).
  16. 16. P. Vaidya, S. A. Morley, J. Tol, Y. Liu, R. Cheng, A. Brataas, D. Lederman, and E. Barco, Science 368, 160 (2020).
  17. 17. J. Li, C. B. Wilson, R. Cheng, M. Lohmann, M. Kavand, W. Yuan, M. Aldosary, N. Agladze, P. Wei, M. S. Sherwin, and J. Shi, Nature 578, 70 (2020).
  18. 18. H. Wang, Y. Xiao,M. Guo, E. L.Wong, G. Q. Yan, R. Cheng, and C. R. Du, Phys. Rev. Lett. 127, 117202 (2021).
  19. 19. R. Lebrun, A. Ross, S. A. Bender, A. Qaiumzadeh, L. Baldrati, J. Cramer, A. Brataas, R. A. Duine, and M. Kl¨aui, Nature 561, 222 (2018).
  20. 20. O. Gomonay, T. Jungwirth, and J. Sinova, Phys. Rev. Lett. 117, 017202 (2016).
  21. 21. S. K. Kim, G. S. D. Beach, K.-J. Lee, T. Ono, Th. Rasing, and H. Yang, Nat. Mater. 21, 24 (2022).
  22. 22. C. O. Avci, E. Rosenberg, L. Caretta, F. Buttner, M. Mann, C. Marcus, D. Bono, C. A. Ross, and G. S. D. Beach, Nat. Nanotechnol. 14, 561 (2019).
  23. 23. H. A. Zhou, Y. Dong, T. Xu, K. Xu, L. S. Tejerina, L. Zhao,Y. Ba, P. Gargiani, M. Valvidares, Y. Zhao, M. Carpentieri, O. A. Tretiakov, X. Zhong, G. Finocchio, S. K. Kim, and W. Jiang, arXiv:1912.01775.
  24. 24. S. Velez, J. Schaab, M. S. Wornle, M. Muller, E. Gradauskaite, P. Welter, C. Gutgsell, C. Nistor, C. L. Degen, M. Trassin, M. Fiebig, and P. Gambardella, Nat. Commun. 10, 4750 (2019).
  25. 25. Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Phys. Rev. Lett. 88, 117601 (2002).
  26. 26. Л. В. Келдыш, ЖЭТФ 47, 1515 (1964)
  27. 27. Sov. Phys. JETP 20, 1018 (1965).
  28. 28. В. Г. Барьяхтар, Б. А. Иванов, М. В. Четкин, УФН 28, 563 (1985)
  29. 29. Usp. Fiz. Nauk 146, 417 (1985).
  30. 30. J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 (1986).
  31. 31. B. L. Altshuler and A. G. Aronov, in Electron-Electron Interactions in Disordered Systems, ed. by A. L. Efros and M. Pollak, North-Holland, Amsterdam (1985), Ch. 1.
  32. 32. E. van der Bijl, R. E. Troncoso, and R. A. Duine, Phys. Rev. B 88, 064417 (2013).
  33. 33. А. А. Абрикосов, Л. П. Горьков,ЖЭТФ 42, 1088 (1962)
  34. 34. A. A. Abrikosov and L. P. Gor'kov, Sov. Phys. JETP 15, 752 (1962).
  35. 35. М. И. Дьяконов, В. И. Перель, ЖЭТФ 33, 1053 (1971)
  36. 36. Zh. Eksp. Teor. Fiz. 60, 1954 (1971).
  37. 37. N. L. Schryer and L. R. Walker, J. Appl. Phys. 45, 5406 (1974).
  38. 38. A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, Phys. Rep. 194, 117 (1990).
  39. 39. S. K. Kim, Y. Tserkovnyak, and O. Tchernyshyov, Phys. Rev. B 90, 104406 (2014).
  40. 40. E. G. Tveten, A. Qaiumzadeh, and A. Brataas, Phys. Rev. Lett. 112, 147204 (2014).
  41. 41. А. Г. Аронов, Письма в ЖЭТФ 24, 37 (1976)
  42. 42. Sov. Phys. JETP Lett. 24, 32 (1976).
  43. 43. M. Johnson and R. H. Silsbee, Phys. Rev. B 37, 5312 (1988).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library