- Код статьи
- 10.31857/S0044451023120088-1
- DOI
- 10.31857/S0044451023120088
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 164 / Номер выпуска 6
- Страницы
- 942-954
- Аннотация
- Рассматривается калибровочная SU (2)L × U (1) модель с расширением лептонного сектора тремя правыми майорановскими стерильными нейтрино. Проведена диагонализация полной массовой матрицы 6 × 6 активных и стерильных нейтрино. Получены космологические ограничения, вытекающие из времени жизни стерильных нейтрино и доли энергии, переносимой стерильной нейтринной темной материей. Рассмотрены отклонения от сценария «тонкой настройки» смешивания, чувствительного к массе наиболее легкого стандартного (активного) нейтрино и выделены соответствующие этим отклонениям области пространства параметров модели.
- Ключевые слова
- Дата публикации
- 16.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 3
Библиография
- 1. G. Bellini, L. Ludhova, G. Ranucci, and F. Villante, Neutrino Oscillations, Adv. High Energy Phys. 2014, 191960 (2014), arXiv:1310.7858.
- 2. P.A. Zyla et al., Particle Data Group, Prog. Theor. Exp. Phys., 083C01, 2020.
- 3. R. N. Mohapatra and G. Senjanovic, Neutrino Mass and Spontaneous Parity Violation, Phys. Rev. Lett. 44, 912 (1980).
- 4. J. Schechter and J. W. F. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22, 2227 (1980).
- 5. Z. Maki, M. Nakagawa, and S. Sakata, Remarks on the Unified Model of Elementary Particles, Prog. Theor. Phys. 28, 870 (1962).
- 6. T. Yanagida, Horizontal Symmetry and Masses of Neutrinos, Prog. Theor. Phys. 64, 1103 (1980).
- 7. R. Mohapatra, Mechanism for Understanding Small Neutrino Mass in Superstring Theories, Phys. Rev. Lett. 56, 561 (1986).
- 8. S. Alekhin et al., A facility to Search for Hidden Particles at the CERN SPS: the SHiP Physics Case, Rep. Prog. Phys. 79, 124201 (2016), arXiv: 1504.04855 [hep-ph].
- 9. R. Adhikari et al., White Paper on KэВ Sterile Neutrino Dark Matter, JCAP 01, 025 (2017), arXiv:1602.04816 [hep-ph].
- 10. A. Boyarsky, O. Ruchayskiy, and M. Shaposhnikov, The Role of Sterile Neutrinos in Cosmology and Astrophysics, Ann. Rev. Nucl. Part. Sci. 59, 191 (2009), arXiv:0901.0011.
- 11. A. Merle, KeV Neutrino Model Building, Int. J. Mod. Phys. D 22, 1330020 (2013), arXiv:1302.2625.
- 12. T. Asaka, S. Blanchet, and M. Shaposhnikov, The nuMSM, Dark Matter and Neutrino Masses, Phys. Lett. B 631, 151 (2005), hep-ph/0503065.
- 13. M. Shaposhnikov, A Possible Symmetry of the nuMSM, Nucl. Phys. B 763, 49 (2007), hepph/0605047.
- 14. U. Seljak et al., Cosmological Parameter Analysis Including SDSS Ly-alpha Forest and Galaxy Bias: Constraints on the Primordial Spectrum of Fluctuations, Neutrino Mass, and Dark Energy 2004, Phys. Rev. D 71, 103515 (2005), astro-ph/0407372.
- 15. A. Ibarra, E. Molinaro, and S. Petcov, TeV Scale See-Saw Mechanisms of Neutrino Mass Generation, the Majorana Nature of the Heavy Singlet Neutrinos and ββ)0- Decay, J. High Energ. Phys. 09, 108 (2010), arXiv:1007.2378 [hep-ph].
- 16. J. Casas and A. Ibarra, Oscillating Neutrinos and μ → e, γ, Nucl.Phys. B 618, 171 (2001), arXiv: hepph/0103065.
- 17. C. Hagedorn and E. Molinaro, Flavor and CP ymmetries for Leptogenesis and 0 νββ Decay, Nucl. Phys. B 919, 404 (2017), arXiv:1602.04206 [hep-ph].
- 18. S. Bilenky, S. Petcov, and B. Pontecorvo, Lepton Mixing, μ → eγ Decay and Neutrino Oscillations, Phys. Lett. B 67, 309 (1977).
- 19. J. Hisano and D. Nomura, Solar and Atmospheric Neutrino Oscillations and Lepton Flavor Violation in Supersymmetric Models with the Right-Handed Neutrinos, Phys. Rev. D 53, 116005 (1999), arXiv:hep-ph/9810479.
- 20. A. Semenov, LanHEP - A Package for Automatic Generation of Feynman Rules from the Lagrangian. Version 3.2, Comput. Phys. Commun.201, 167 (2016), arXiv: 1412.5016 [physics.comp-ph].
- 21. K. Bondarenko, A. Boyarsky D. Gorbunov, and O. Ruchayskiy, Phenomenology of GeV-scale Heavy Neutral Leptons, J. High Energy Phys. 11, 032 (2018), arXiv:1805.08567 [hep-ph].
- 22. S. Tremaine and J. E. Gunn, Dynamical Rof Light Neutral Leptons in Cosmology, Phys. Rev. Lett. 42, 407 (1979).
- 23. Т. М. Алиев, М. И. Высоцкий, О возможности регистрации фотонов от распада реликтовых нейтрино во Вселенной, УФН 135, 709 (1981), https://ufn.ru/ru/articles/1981/12/f/.
- 24. A. Boyarsky and O. Ruchayskiy, Bounds on Light Dark Matter, arXiv:0811.2385 [astro-ph].
- 25. A. Boyarsky, A. Neronov, O. Ruchayskiy, and M. Shaposhnikov, Constraints on Sterile Neutrino as a Dark Matter Candidate from the Diffuse X-Ray Background, Mon. Not. Roy. Astron. Soc. 370, 213 (2006), arXiv:astro-ph/0512509 [astro-ph].
- 26. A. Boyarsky, A. Neronov, O. Ruchayskiy, M. Shaposhnikov, and I. Tkachev, Where to Find a Dark Matter Sterile Neutrino?, Phys. Rev. Lett. 97, 261302 (2006), arXiv:astro-ph/0603660 [astro-ph].
- 27. S. Dodelson and L. M. Widrow, Sterile-Neutrinos as Nark Matter, Phys. Rev. Lett. 72, 17 (1994).
- 28. A. Dolgov and S. Hansen, Massive Sterile Neutrinos as Warm Dark Matter, Astropart. Phys. 16, 339 (2002), arXiv: hep-ph/0009083.
- 29. K. Abazajian, G. M. Fuller, and M. Patel, Sterile Neutrino Hot, Warm, and Cold Dark Matter, Phys. Rev. D 64, 023501 (2001), arXiv: astro-ph/0101524.
- 30. M. Viel, J. Lesgourgues, M. Haehnelt, S. Matarrese, and A. Riotto, Phys. Rev. D 71, 063534 (2005), arXiv:astro-ph/0106108.
- 31. A. Boyarsky, O. Ruchayskiy, and D. Iakubovskyi, A Lower Bound on the Mass of Dark Matter Particles, JCAP 03, 005 (2009).
- 32. A. Abdullahi et al., The Present and Future Status of Heavy Neutral Leptons, Proc. of Snowmass 2021, arXiv:2203.08039 [hep-ph].
- 33. D. Britton et al., Improved Search for Massive Neutrinos in pi+ → e+ Neutrino Decay, Phys. Rev. D 46, 885 (1992).
- 34. A. Aguilar-Arevalo et al., Improved Search for Heavy Neutrinos in the Decay π → eν, Phys. Rev. D 97, 072012 (2018), arXiv:1712.03275[hep-ph].
- 35. E. Cortina Gil et al., Search for Heavy Neutral Lepton Production in K+ Decays to Positrons, Phys. Lett. B 807, 135599 (2020), arXiv:2005.09575[hep-ph].
- 36. A. Artamonov et al., Search for Heavy Neutrinos in K → μν Decays, Phys. Rev. D 91, 052001 (2015), arXiv:1411.3963[hep-ph]
- 37. erratum: Phys. Rev. D 91, 059903 (2015).
- 38. T. Yamazaki et al., Search for Heavy Neutrinos in Kaon Decay, Conf. Proc. C 840719, 262 (1984).
- 39. P. Abreu et al., Search for Neutral Heavy Leptons Produced in Z Decays, Z. Phys. C 74, 57 (1997)
- 40. erratum: Z. Phys. C 75, 580 (1997).
- 41. G. Bernardi et al., Search for Neutrino Decay, Phys. Lett. B 166, 479 (1986)
- 42. G. Bernardi et al., Further Limits on Heavy Neutrino Couplings, Phys. Lett. B 203, 332 (1988).
- 43. F. Bergsma et al., A Search for Decays of Heavy Neutrinos in the Mass Range 0.5 GeV to 2.8 GeV, Phys. Lett. B 166, 473 (1986).
- 44. A. Vaitaitis et al., Search for Neutral Heavy Leptons in a Yigh-Energy Neutrino Beam, Phys. Rev. Lett. 83, 4943 (1999), arXiv:hep-ex/9908011.
- 45. T. Asaka, S. Eijima, and K. Takeda, Lepton Universality in the νMSM, Phys. Lett.B 742, 303 (2015), arXiv:1410.0432 [hep-ph].
- 46. M. Gronau, C. Leung, and J. Rosner, Extending Limits on Neutral Heavy Leptons, Phys. Rev. D 29, 2539 (1984).
- 47. W. Rodejohann, Neutrino-less Double Beta Decay and Particle Physics, Int. J. Mod. Phys. E 20, 1833 (2011), arXiv:1106.1334.
- 48. T. Asaka and T. Tsuyuki, Seesaw Mechanism at Electron-Electron Colliders, Phys. Rev. D 92, 094012 (2015), arXiv:1508.04937 [hep-ph].
- 49. M.N. Dubinin and D.M. Kazarkin, arXiv:2212.11310 [hep-ph].
- 50. M.N. Dubinin and E.Yu. Fedotova, Symmetry 15, 679 (2023), arXiv:2303.06680 [hep-ph].
- 51. J. Ellis, M. E. Gomez, G. K. Leontaris, S. Lola, and D. V. Nanopoulos, Charged Lepton Fviolation in the Light of the Super-Kamiokande Data, Eur. Phys. J. C 14, 319 (2000), arXiv:hep-ph/9911459.
- 52. J. L. Feng, Y. Nir, and Y. Shadmi, Neutrino Parameters, Abelian Flavor Symmetries, and Charged Lepton Flavor Violation, Phys. Rev. D 61, 113005 (2000), arXiv:hep-ph/9911370.
- 53. W. Buchmuller, D. Delepine, and L. T. Handoko, Neutrino Mixing and Flavor Changing Processes, Nucl. Phys. B 576, 445 (2000), arXiv:hepph/9912317.
- 54. S. F. King and M. Oliveira, Lepton Flavor Violation in String Inspired Models, Phys. Rev. D 60, 035003 (1999), arXiv:hep-ph/9804283.
- 55. R. Barbieri, L. Hal,l and A. Strumia, Violations of Lepton Flavor and CP in Supersymmetric Unified Theories, Nucl. Phys. B 445, 219 (1995), arXiv:hepph/9501334.