RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

Improved Cosmological Bounds for Mixing Scenarios of Three Sterile Neutrino Generations

PII
10.31857/S0044451023120088-1
DOI
10.31857/S0044451023120088
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 164 / Issue number 6
Pages
942-954
Abstract
The gauge SU(2)L × U(1) model with the extension of the lepton sector by three right-handed Majorana sterile neutrinos is considered. The complete mass matrix of 6 × 6 active and sterile neutrinos is diagonalized. The cosmological bounds following from the lifetime of sterile neutrinos and the fraction of energy carried by sterile neutrino dark matter are obtained. The deviations from the “fine-tuned” mixing scenario sensitive to the mass of the lightest standard (active) neutrino are considered, and the regions of the model parameter space corresponding to these deviations are distinguished.
Keywords
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
5

References

  1. 1. G. Bellini, L. Ludhova, G. Ranucci, and F. Villante, Neutrino Oscillations, Adv. High Energy Phys. 2014, 191960 (2014), arXiv:1310.7858.
  2. 2. P.A. Zyla et al., Particle Data Group, Prog. Theor. Exp. Phys., 083C01, 2020.
  3. 3. R. N. Mohapatra and G. Senjanovic, Neutrino Mass and Spontaneous Parity Violation, Phys. Rev. Lett. 44, 912 (1980).
  4. 4. J. Schechter and J. W. F. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22, 2227 (1980).
  5. 5. Z. Maki, M. Nakagawa, and S. Sakata, Remarks on the Unified Model of Elementary Particles, Prog. Theor. Phys. 28, 870 (1962).
  6. 6. T. Yanagida, Horizontal Symmetry and Masses of Neutrinos, Prog. Theor. Phys. 64, 1103 (1980).
  7. 7. R. Mohapatra, Mechanism for Understanding Small Neutrino Mass in Superstring Theories, Phys. Rev. Lett. 56, 561 (1986).
  8. 8. S. Alekhin et al., A facility to Search for Hidden Particles at the CERN SPS: the SHiP Physics Case, Rep. Prog. Phys. 79, 124201 (2016), arXiv: 1504.04855 [hep-ph].
  9. 9. R. Adhikari et al., White Paper on KэВ Sterile Neutrino Dark Matter, JCAP 01, 025 (2017), arXiv:1602.04816 [hep-ph].
  10. 10. A. Boyarsky, O. Ruchayskiy, and M. Shaposhnikov, The Role of Sterile Neutrinos in Cosmology and Astrophysics, Ann. Rev. Nucl. Part. Sci. 59, 191 (2009), arXiv:0901.0011.
  11. 11. A. Merle, KeV Neutrino Model Building, Int. J. Mod. Phys. D 22, 1330020 (2013), arXiv:1302.2625.
  12. 12. T. Asaka, S. Blanchet, and M. Shaposhnikov, The nuMSM, Dark Matter and Neutrino Masses, Phys. Lett. B 631, 151 (2005), hep-ph/0503065.
  13. 13. M. Shaposhnikov, A Possible Symmetry of the nuMSM, Nucl. Phys. B 763, 49 (2007), hepph/0605047.
  14. 14. U. Seljak et al., Cosmological Parameter Analysis Including SDSS Ly-alpha Forest and Galaxy Bias: Constraints on the Primordial Spectrum of Fluctuations, Neutrino Mass, and Dark Energy 2004, Phys. Rev. D 71, 103515 (2005), astro-ph/0407372.
  15. 15. A. Ibarra, E. Molinaro, and S. Petcov, TeV Scale See-Saw Mechanisms of Neutrino Mass Generation, the Majorana Nature of the Heavy Singlet Neutrinos and ββ)0- Decay, J. High Energ. Phys. 09, 108 (2010), arXiv:1007.2378 [hep-ph].
  16. 16. J. Casas and A. Ibarra, Oscillating Neutrinos and μ → e, γ, Nucl.Phys. B 618, 171 (2001), arXiv: hepph/0103065.
  17. 17. C. Hagedorn and E. Molinaro, Flavor and CP ymmetries for Leptogenesis and 0 νββ Decay, Nucl. Phys. B 919, 404 (2017), arXiv:1602.04206 [hep-ph].
  18. 18. S. Bilenky, S. Petcov, and B. Pontecorvo, Lepton Mixing, μ → eγ Decay and Neutrino Oscillations, Phys. Lett. B 67, 309 (1977).
  19. 19. J. Hisano and D. Nomura, Solar and Atmospheric Neutrino Oscillations and Lepton Flavor Violation in Supersymmetric Models with the Right-Handed Neutrinos, Phys. Rev. D 53, 116005 (1999), arXiv:hep-ph/9810479.
  20. 20. A. Semenov, LanHEP - A Package for Automatic Generation of Feynman Rules from the Lagrangian. Version 3.2, Comput. Phys. Commun.201, 167 (2016), arXiv: 1412.5016 [physics.comp-ph].
  21. 21. K. Bondarenko, A. Boyarsky D. Gorbunov, and O. Ruchayskiy, Phenomenology of GeV-scale Heavy Neutral Leptons, J. High Energy Phys. 11, 032 (2018), arXiv:1805.08567 [hep-ph].
  22. 22. S. Tremaine and J. E. Gunn, Dynamical Rof Light Neutral Leptons in Cosmology, Phys. Rev. Lett. 42, 407 (1979).
  23. 23. Т. М. Алиев, М. И. Высоцкий, О возможности регистрации фотонов от распада реликтовых нейтрино во Вселенной, УФН 135, 709 (1981), https://ufn.ru/ru/articles/1981/12/f/.
  24. 24. A. Boyarsky and O. Ruchayskiy, Bounds on Light Dark Matter, arXiv:0811.2385 [astro-ph].
  25. 25. A. Boyarsky, A. Neronov, O. Ruchayskiy, and M. Shaposhnikov, Constraints on Sterile Neutrino as a Dark Matter Candidate from the Diffuse X-Ray Background, Mon. Not. Roy. Astron. Soc. 370, 213 (2006), arXiv:astro-ph/0512509 [astro-ph].
  26. 26. A. Boyarsky, A. Neronov, O. Ruchayskiy, M. Shaposhnikov, and I. Tkachev, Where to Find a Dark Matter Sterile Neutrino?, Phys. Rev. Lett. 97, 261302 (2006), arXiv:astro-ph/0603660 [astro-ph].
  27. 27. S. Dodelson and L. M. Widrow, Sterile-Neutrinos as Nark Matter, Phys. Rev. Lett. 72, 17 (1994).
  28. 28. A. Dolgov and S. Hansen, Massive Sterile Neutrinos as Warm Dark Matter, Astropart. Phys. 16, 339 (2002), arXiv: hep-ph/0009083.
  29. 29. K. Abazajian, G. M. Fuller, and M. Patel, Sterile Neutrino Hot, Warm, and Cold Dark Matter, Phys. Rev. D 64, 023501 (2001), arXiv: astro-ph/0101524.
  30. 30. M. Viel, J. Lesgourgues, M. Haehnelt, S. Matarrese, and A. Riotto, Phys. Rev. D 71, 063534 (2005), arXiv:astro-ph/0106108.
  31. 31. A. Boyarsky, O. Ruchayskiy, and D. Iakubovskyi, A Lower Bound on the Mass of Dark Matter Particles, JCAP 03, 005 (2009).
  32. 32. A. Abdullahi et al., The Present and Future Status of Heavy Neutral Leptons, Proc. of Snowmass 2021, arXiv:2203.08039 [hep-ph].
  33. 33. D. Britton et al., Improved Search for Massive Neutrinos in pi+ → e+ Neutrino Decay, Phys. Rev. D 46, 885 (1992).
  34. 34. A. Aguilar-Arevalo et al., Improved Search for Heavy Neutrinos in the Decay π → eν, Phys. Rev. D 97, 072012 (2018), arXiv:1712.03275[hep-ph].
  35. 35. E. Cortina Gil et al., Search for Heavy Neutral Lepton Production in K+ Decays to Positrons, Phys. Lett. B 807, 135599 (2020), arXiv:2005.09575[hep-ph].
  36. 36. A. Artamonov et al., Search for Heavy Neutrinos in K → μν Decays, Phys. Rev. D 91, 052001 (2015), arXiv:1411.3963[hep-ph]
  37. 37. erratum: Phys. Rev. D 91, 059903 (2015).
  38. 38. T. Yamazaki et al., Search for Heavy Neutrinos in Kaon Decay, Conf. Proc. C 840719, 262 (1984).
  39. 39. P. Abreu et al., Search for Neutral Heavy Leptons Produced in Z Decays, Z. Phys. C 74, 57 (1997)
  40. 40. erratum: Z. Phys. C 75, 580 (1997).
  41. 41. G. Bernardi et al., Search for Neutrino Decay, Phys. Lett. B 166, 479 (1986)
  42. 42. G. Bernardi et al., Further Limits on Heavy Neutrino Couplings, Phys. Lett. B 203, 332 (1988).
  43. 43. F. Bergsma et al., A Search for Decays of Heavy Neutrinos in the Mass Range 0.5 GeV to 2.8 GeV, Phys. Lett. B 166, 473 (1986).
  44. 44. A. Vaitaitis et al., Search for Neutral Heavy Leptons in a Yigh-Energy Neutrino Beam, Phys. Rev. Lett. 83, 4943 (1999), arXiv:hep-ex/9908011.
  45. 45. T. Asaka, S. Eijima, and K. Takeda, Lepton Universality in the νMSM, Phys. Lett.B 742, 303 (2015), arXiv:1410.0432 [hep-ph].
  46. 46. M. Gronau, C. Leung, and J. Rosner, Extending Limits on Neutral Heavy Leptons, Phys. Rev. D 29, 2539 (1984).
  47. 47. W. Rodejohann, Neutrino-less Double Beta Decay and Particle Physics, Int. J. Mod. Phys. E 20, 1833 (2011), arXiv:1106.1334.
  48. 48. T. Asaka and T. Tsuyuki, Seesaw Mechanism at Electron-Electron Colliders, Phys. Rev. D 92, 094012 (2015), arXiv:1508.04937 [hep-ph].
  49. 49. M.N. Dubinin and D.M. Kazarkin, arXiv:2212.11310 [hep-ph].
  50. 50. M.N. Dubinin and E.Yu. Fedotova, Symmetry 15, 679 (2023), arXiv:2303.06680 [hep-ph].
  51. 51. J. Ellis, M. E. Gomez, G. K. Leontaris, S. Lola, and D. V. Nanopoulos, Charged Lepton Fviolation in the Light of the Super-Kamiokande Data, Eur. Phys. J. C 14, 319 (2000), arXiv:hep-ph/9911459.
  52. 52. J. L. Feng, Y. Nir, and Y. Shadmi, Neutrino Parameters, Abelian Flavor Symmetries, and Charged Lepton Flavor Violation, Phys. Rev. D 61, 113005 (2000), arXiv:hep-ph/9911370.
  53. 53. W. Buchmuller, D. Delepine, and L. T. Handoko, Neutrino Mixing and Flavor Changing Processes, Nucl. Phys. B 576, 445 (2000), arXiv:hepph/9912317.
  54. 54. S. F. King and M. Oliveira, Lepton Flavor Violation in String Inspired Models, Phys. Rev. D 60, 035003 (1999), arXiv:hep-ph/9804283.
  55. 55. R. Barbieri, L. Hal,l and A. Strumia, Violations of Lepton Flavor and CP in Supersymmetric Unified Theories, Nucl. Phys. B 445, 219 (1995), arXiv:hepph/9501334.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library