RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

Spin Glass Model for GaAs/AlGaAs Quantum Wells Doped by Nonmagnetic Impurities near the Metal-Insulator Transition

PII
10.31857/S004445102311010X-1
DOI
10.31857/S004445102311010X
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 164 / Issue number 5
Pages
797-804
Abstract
In a previous report, we presented experiments which suggested that ferromagnetic ordering of the spins of localized holes in GaAs/AlGaAs quantum wells could be observed when doped with shallow (Be) acceptors at impurity concentrations near the metal-insulator transition. The compensating impurity (Si) was introduced into a narrow region at the center of the barriers [4]. In this paper, we present results from magnetotransport experiments performed on similar structures, but without the compensating impurity (Si). In these samples, the compensation degree is expected to be controlled by the background defects located at the edges of the quantum wells and within the barriers. At low temperatures T ≤ 10 K, we observed isotropic, linear magnetoresistance, anomalous behavior of the Hall effect as a function of the magnetic field, and slow relaxation of resistance after the application of a magnetic field. We explain this anomalous magnetotransport as the manifestation of a ferromagnetic transition or spin glass, originating from indirect spin exchange between localized holes on impurities near the metal-insulator transition. However, we note that perfect disorder, including signs of interspin interactions, leads to unstable configurations. In what follows, we present a model in which we start with this perfect disorder, but apply a procedure to obtain a stable configuration. We show that the resulting spin structure, a “closely packed” structure of “droplets,” can reproduce the features observed in the experiment, particularly isotropic, linear magnetoresistance.
Keywords
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
4

References

  1. 1. T. Dietl and H. Ohno, Rev. Mod. Phys. 86, 187 (2014).
  2. 2. E. Nielsen and R. N. Bhatt, Phys. Rev. B 82, 195117 (2010).
  3. 3. J. Kundrotas and A. Cerskus, J. Appl. Phys.103, 123108 (2008).
  4. 4. А. В. Шумилин, В. И. Козуб, Н. В. Агринская, Н. Ю. Михайлин, Д. В. Шамшур, ЖЭТФ 159, 915 (2021).
  5. 5. N. V. Agrinskaya, V. I. Kozub, Yu. M. Galperin, and D. V. Shamshur, J. Phys.: Cond. Matt. 20, 395216 (2008).
  6. 6. N. V. Agrinskaya, V. I. Kozub, N. Y. Mikhailin, and D. V. Shamshur, JETP Lett. 105, 484 (2017).
  7. 7. Н. В. Агринская, Н. Ю. Михайлин, Д. В. Шамшур, ЖЭТФ 162, 127 (2022).
  8. 8. A. P. Li, J. F. Wendelken, J. Shen, L. C. Feldman, J. R. Thompson, and H. H. Weitering, Phys. Rev. B72 195205 (2005).
  9. 9. Hui Lin Zhao, B. Z. Spivak, M. P. Gelfand, and Shechao Feng, Phys. Rev. B 44, 10760 (1991).
  10. 10. D. S. Fisher and D. A. Huse, Phys. Rev. Lett. 56, 1601 (1986).
  11. 11. F. Liers and O. C. Martin, Phys. Rev. B 76, 060405 (R) (2007).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library