RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

Influence of the Effects of Competition of Various Types of Anisotropy on the Critical Behavior of Magnetic Multilayer Structures

PII
10.31857/S0044451023110081-1
DOI
10.31857/S0044451023110081
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 164 / Issue number 5
Pages
782-789
Abstract
The influence of the competition of single-ion anisotropy and easy-plane anisotropy on the magnetic properties of the multilayer structure Co/Cu/Co is investigated. The peculiarities of the influence of anisotropy effects are revealed both in the vicinity of critical temperature Tc and in the low-temperature range T < Tc. The magnetic properties of the multilayer structure are numerically simulated using the anisotropic Heisenberg model. In the vicinity of Tc, easy-plane anisotropy is shown to exert a predominant influence on the magnetic properties of the structure as compared to the influence of single-ion anisotropy. In the low-temperature range, the switching of the magnetic state of the ferromagnetic film in an external field leads to the appearance of specific features in hysteresis effects due to the competition of two types of magnetic anisotropy. The magnetic structure exhibits a size-induced transition from the behavior caused by easy-plane anisotropy to the behavior caused by single-ion anisotropy. The revealed size-induced transition is accompanied by a spin-flop effect.
Keywords
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
4

References

  1. 1. G. Mihajlovi'c, N. Smith, T. Santos, J. Li, B. D. Terris, and J. A. Katine, Appl. Phys. Lett. 117, 242404 (2020).
  2. 2. R. B. Morgunov, G. L. L'vova, A. D. Talantsev, O. V. Koplak, T. Fache, and S. Mangin, J. Magn. Magn. Mater. 459, 33 (2018).
  3. 3. C. C. Huang, X. Zhou, and D. A. Hall, Sci. Rep. 7, 45493 (2017).
  4. 4. J. Sarkar, Sputtering Materials for VLSI and Thin Film Devices., Elsevier, Amsterdam (2014).
  5. 5. M. T. Johnson, P. J. H. Bloemen, F. J. A. den Broeder, and J. J. de Vries, Rep. Prog. Phys. 59, 1409 (1996).
  6. 6. C. A. F. Vaz, J. A. C. Bland, and G. Lauho, Rep. Prog. Phys. 71, 056501 (2008).
  7. 7. P. V. Prudnikov, V. V. Prudnikov, and M. A. Medvedeva, JETP Lett. 100, 446 (2014).
  8. 8. A. O. Adeyeye, G. Shimon, Magnetism of Surfaces, Interfaces, and Nanoscale Materials. Handbook of Surface Science., Elsevier, Amsterdam (2015).
  9. 9. B. Heinrich, T. Monchesky, and R. Urban, J. Magn. Magn. Mater. 236, 339 (2001).
  10. 10. P. V. Prudnikov, V. V. Prudnikov, M. A. Menshikova, N. I. Piskunova, J. Magn. Magn. Mater. 387, 77 (2015).
  11. 11. P. V. Prudnikov, V. V. Prudnikov, A. Yu. Danilova, V. O. Borzilov, and G. G. Baksheev, EPJ Web Conf. 185, 11009 (2018).
  12. 12. F. Huang, M. T. Kief, G. J. Mankey, and R. F. Willis, Phys. Rev. B. 49, 3962 (1994).
  13. 13. R. A. Duine, K. J. Lee, S. Parkin, and M. D. Stiles, Nat. Phys. 14, 217 (2018).
  14. 14. V. V. Prudnikov, P. V. Prudnikov, M. V. Mamonova, M. M. Firstova, and A. A. Samoshilova, J. Phys.Commun. 3, 015002 (2019).
  15. 15. M. Pajda, J. Kudrnovsky, I. Turek, V. Drchal, and P. Bruno, Phys. Rev. B. 64, 174402 (2001).
  16. 16. T. Tanuma, S. Takahasi, M. Kume, and K. Kuroki, J. Magn. Soc. Jpn. 18, S1 (1994).
  17. 17. Y. Chen, M. Kadic, and M. Wegener, Nat.Commun. 12, 3278 (2021).
  18. 18. A. Fern'andez-Pacheco, R. Streubel, O. Fruchart, R. Hertel, P. Fischer, and R. P. Cowburn, Nat.Commun. 8, 15756 (2017).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library