ОФНЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

Оптимизация параметров петель обратной связи в оптических часах на атомах тулия при синхронном сличении

Код статьи
10.31857/S0044451023080084-1
DOI
10.31857/S0044451023080084
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 164 / Номер выпуска 2
Страницы
223-229
Аннотация
Синхронное сличение оптических часов с использованием фазово-когерентных часовых лазеров позволяет определять разность (отношение) частот часовых переходов, не ограниченную общими шумами используемых лазеров. Проведено детальное моделирование сличения двух тулиевых оптических часов с использованием синхронного опроса атомов излучением общего часового лазера. Определен ряд критичных параметров, таких как остаточные нескореллированные частотные и амплитудные шумы импульсов пробного излучения и шумы считывания, которые могут приводить к ухудшению стабильности сличения. В то же время продемонстрировано, что такой способ нечувствителен к флуктуациям числа атомов, калибровке параметров петли обратной связи, отдельным выбросам в циклах измерений и флуктуациям лабораторного магнитного поля.
Ключевые слова
Дата публикации
15.08.2023
Год выхода
2023
Всего подписок
0
Всего просмотров
33

Библиография

  1. 1. T. Nicholson, S. Campbell, R. Hutson, G. Marti, B. Bloom, R. McNally, W. Zhang, M. Barrett, M. Safronova, G. Strouse, W. Tew, and J. Ye, Nature Сommun. 6, 1 (2015).
  2. 2. S. M. Brewer, J. Chen, A. M. Hankin, E. R. Clements, C. W. Chou, D. J. Wineland, D. B. Hume, and D. R. Leibrandt, Phys. Rev. Lett. 123, 033201 (2019).
  3. 3. N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, and E. Peik, Phys. Rev. Lett. 116, 063001 (2016).
  4. 4. T. Bothwell, D. Kedar, E. Oelker, J. M. Robinson, S. L. Bromley, W. L. Tew, J. Ye, and C. J. Kennedy, Metrologia 56, 065004 (2019).
  5. 5. E. Oelker et al., Nature Photon. 13, 714 (2019).
  6. 6. T. Bothwell, C. J. Kennedy, A. Aeppli, D. Kedar, J. M. Robinson, E. Oelker, A. Staron, and J. Ye, Nature 602, 420 (2022).
  7. 7. H. Inaba, K. Hosaka, M. Yasuda, Y. Nakajima, K. Iwakuni, D. Akamatsu, S. Okubo, T. Kohno, A. Onae, and F.-L. Hong, Opt. Express 21, 7891 (2013).
  8. 8. A. Golovizin, E. Fedorova, D. Tregubov, D. Sukachev, K. Khabarova, V. Sorokin, and N. Kolachevsky, Nature Commun. 10, 1724 (2019).
  9. 9. A. A. Golovizin, D. O. Tregubov, E. S. Fedorova, D. A. Mishin, D. I. Provorchenko, K. Y. Khabarova, V. N. Sorokin, and N. N. Kolachevsky, Nature Commun. 12, 5171 (2021).
  10. 10. A. Golovizin, D. Tregubov, E. Fedorova, D. Mishin, D. Provorchenko, D. Sukachev, K. Khabarova, V. Sorokin, and N. Kolachevsky, AIP Conf. Proc. 2241, 020016 (2020).
  11. 11. A. Golovizin, D. Tregubov, D. Mishin, D. Provorchenko, and N. Kolachevsky, Opt. Express 29, 36734 (2021).
  12. 12. D. Tregubov, A. Golovizin, D. Provorchenko, D. Mishin, V. Sorokin, K. Khabarova, and N. Kolachevsky, 2021 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS), 1 (2021).
  13. 13. K. Kudeyarov, G. Vishnyakova, K. Y. Khabarova, and N. Kolachevsky, Laser Phys. 28, 105103 (2018).
  14. 14. A. Kuhl, T. Waterholter, S. Koke, G. Grosche, G. Vishnyakova, and R. Holzwarth, 2019 Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum (EFTF/IFC), 1 (2019).
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека