RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

Two-Dimensional Magneto-optical Trap for Producing a Flux of Cold Thulium Atoms

PII
10.31857/S0044451023080060-1
DOI
10.31857/S0044451023080060
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 164 / Issue number 2
Pages
204-213
Abstract
We propose a design of a source of cold thulium atoms based on a 2D magneto-optical trap and perform numerical simulation of its operation. Optimal parameters of cooling radiation and the magnetic field are determined; it is shown that for a total radiation power of 50 mW and an atomic oven temperature of 800 K, the proposed configuration can provide a flux of 4 × 108 cold atoms per second, and with an increase of the oven temperature, the flux can reach ~ 1011 atom/s. Such a source can be used for building frequency standards as well as in experiments with quantum simulators and the Bose–Einstein condensate.
Keywords
Date of publication
15.08.2023
Year of publication
2023
Number of purchasers
0
Views
36

References

  1. 1. K. Bongs et al., Nature Rev. Phys. 1, 731 (2019).
  2. 2. C. Janvier et al., Phys. Rev. A 105, 022801 (2022).
  3. 3. V. M'enoret et al., Sci. Rep. 8, 1 (2018).
  4. 4. I. Bloch, J. Dalibard, and S. Nascimbene, Nature Phys. 8, 267 (2012).
  5. 5. F. Sch¨afer, T. Fukuhara, S. Sugawa, Y. Takasu, and Y. Takahashi, Nature Rev. Phys. 2, 411 (2020).
  6. 6. X. Wu et al., Chinese Phys. B 30, 020305 (2021).
  7. 7. T. Graham et al., Nature 604, 457 (2022).
  8. 8. S. M. Brewer et al., Phys. Rev. Lett. 123, 033201 (2019).
  9. 9. S. D¨orscher et al., Metrologia 58, 015005 (2021).
  10. 10. T. Bothwell et al., Metrologia 56, 065004 (2019).
  11. 11. M. Takamoto, Y. Tanaka, and H. Katori, Appl. Phys. Lett. 120, 140502 (2022).
  12. 12. J. Grotti et al., Nature Phys. 14, 437 (2018).
  13. 13. S. Wang et al., Opt. Express 28, 11852 (2020).
  14. 14. J. Cao et al., Appl. Phys. Lett. 120, 054003 (2022).
  15. 15. A. Golovizin, D. Tregubov, D. Mishin, D. Provorchenko, and N. Kolachevsky, Opt. Express 29, 36734 (2021).
  16. 16. S. Pollock, J. Cotter, A. Laliotis, and E. Hinds, Opt. Express 17, 14109 (2009).
  17. 17. D. S. Barker et al., Phys. Rev. Appl. 11, 064023 (2019).
  18. 18. G. J. Dick, Proceedings of the 19th Annual Precise Time and Time Interval Systems and Applications Meeting, 133 (1989).
  19. 19. D. Pan, B. Arora, Y.-m. Yu, B. Sahoo, and J. Chen, Phys. Rev. A 102, 041101 (2020).
  20. 20. M. A. Norcia et al., Phys. Rev. X 8, 021036 (2018).
  21. 21. G. Biedermann et al., Phys. Rev. Lett. 111, 170802 (2013).
  22. 22. H. Katori, Appl. Phys. Express 14, 072006 (2021).
  23. 23. D. Mishin, D. Provorchenko, D. Tregubov, N. Kolachevsky, and A. Golovizin, Appl. Phys. Express 14, 112006 (2021).
  24. 24. A. Golovizin et al., Nature Commun. 10, 1724 (2019).
  25. 25. D. A. Mishin et al., Quant. Electr. 52, 505 (2022).
  26. 26. A. A. Golovizin et al., Nature Commun. 12, 5171 (2021).
  27. 27. E. Fedorova et al., Phys. Rev. A 102, 063114 (2020).
  28. 28. M. Barbiero et al., Phys. Rev. Appl. 13, 014013 (2020).
  29. 29. M. Kwon et al., Rev. Sci. Instrum. 94, 013202 (2023).
  30. 30. A. A. Golovizin et al., Instrum. Exp. Techn. 65, 896 (2022).
  31. 31. Д. Д. Сукачев, дисс канд. физ.-матем. наук, Физический институт им. П. Н. Лебедева РАН, Москва (2013).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library