- PII
- 10.31857/S0044451023040156-1
- DOI
- 10.31857/S0044451023040156
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 163 / Issue number 4
- Pages
- 585-596
- Abstract
- The volume and conductivity of nonstoichiometric chalcogenide glass g-As3Te2 have been investigated at high hydrostatic pressures (up to 8.5 GPa), and results have been compared with earlier data for stoichiometric chalcogenide glass g-As2Te3. Structural and Raman studies of g-As3Te2 glass have revealed a greater significance of As–As pair correlations in the range of medium-range order compared with “classic” chalcogenide glass g-As2Te3. Even at such a large excess of arsenic, a high concentration of “improper” Te–Te neighbors has been observed because of chemical disorder. Under normal conditions, the thermal gap (0.43–0.48 eV) and resistivity (>104 Ω cm) of glass g-As3Te2 are greater than those of g-As2Te3. The elastic behavior of g-As3Te2 glass, as well as of g-As2Te3, under compression has been observed at pressures up to 1 GPa, the initial values of bulk moduli for these glasses being nearly coincident. Polyamorphic transformation in g-As3Te2 (with softening of relaxing bulk modulus) is more diffuse and extends to higher pressures (from 1.5 to 4.0 GPa). The metallization process in g-As3Te2 is also more diffuse: metallic conductivity is reached at pressures of 5.5–6.0 GPa. As in the case of the stoichiometric glass, the baric dependences of the bulk modulus exhibit a kink in the pressure range 4–5 GPa. Up to maximal pressures, the volume and resistivity relax logarithmically in time with roughly the same rate as in the case of g-As2Te3. The residual densification of g-As3Te2 after pressure release is roughly twice as high as for g-As2Te3 and equals 3.5%, the conductivity of the compacted glass is about three orders of magnitude higher than that of the as-prepared sample. Under normal conditions, a considerable relaxation of the volume and resistivity has been observed. As for densified g-GeS2 glass, the logarithmic kinetics of this relaxation has been successfully described in terms of our earlier model based on the concept of relaxation self-organized criticality with the activation energy (1.3 eV) remaining unchanged up to 5 × 106 s.
- Keywords
- Date of publication
- 15.04.2023
- Year of publication
- 2023
- Number of purchasers
- 0
- Views
- 36
References
- 1. M. Wuttig and N. Yamada, Nat. Mater. 6, 824 (2007).
- 2. S. Danto, P. Houizot, C. Boussard-Pledel, X.-H. Zhang, F. Smektala, and J. Lucas, Adv. Funct. Mater. 16, 1847 (2006).
- 3. M. H. R. Lankhorst, B. W. S. M. M. Ketelaars, and R. A. M. Wolters, Nature Mater. 4, 347 (2005).
- 4. J. Cornet and D. Rossier, J. Non-Cryst. Solids 12, 85 (1973).
- 5. Q. Ma, D. Raoux, and S. Benazeth, Phys. Rev. B 48, 16332 (1993).
- 6. K. Abe, O. Uemura, T. Usuki, Y. Kameda, and M. Sakurai, J. Non-Cryst. Solids 232-234, 682 (1998).
- 7. G. Faigel, L. Granasy, I. Vincze, and Dewaard, J. Non-Cryst. Solids 57, 411 (1983).
- 8. P. J'ov'ari, S. N. Yannopoulos, I. Kaban, A. Kalampounias, I. Lishchynskyy, B. Beuneu, O. Kostadinova, E. Welter, and A. Sch¨ops, J. Chem. Phys. 129, 214502 (2008).
- 9. S. Sen, S. Joshi, B. G. Aitken, and S. Khalid, J. Non- Cryst. Solids 354, 4620 (2008).
- 10. A. Tverjanovich, K. Rodionov, and E. Bychkov, J. Solid-State Chem. 190, 271 (2012).
- 11. D. C. Kaseman, I. Hung, K. Lee, K. Kovnir, Z. Gan, B. Aitken, and S. Sen, J. Phys. Chem. B 119, 2081 (2015).
- 12. M. Dongol, T. Gerber, M. Ha z, M. Abou-Zied, and A. F. Elhady, J. Phys.: Condens. Matter 18, 6213 (2006).
- 13. T. G. Edwards, E. L. Gjersing, S. Sen, S. C. Currie, and B.G. Aitken, J. Non-Cryst. Solids 357, 3036 (2011).
- 14. M. Tenhover, P. Boolchand, and W. J. Bresser, Phys. Rev. B 27, 7533 (1983).
- 15. S. S. K. Titus, R. Chatterjee, S. Asokan, and A. Kumar, Phys. Rev. B 48, 14650 (1993).
- 16. S. Sen, S. Soyer Uzun, C. J. Benmore, and B. J. Aitken, J. Phys.: Condens. Matter 22, 405401 (2010).
- 17. A. Tverjanovich, M. Yagodkina, and V. Strykanov, J. Non-Cryst. Solids 223, 86 (1998).
- 18. V. V. Brazhkin, E. Bychkov, and O.ЮB. Tsiok, Phys. Rev. B 95, 054205 (2017).
- 19. В. В. Бражкин, Е. Бычков, О. Б. Циок, ЖЭТФ 152, 530 (2017).
- 20. E. Bychkov, C. J. Benmore, and D. L. Price, Phys. Rev. B 72, 172107 (2005).
- 21. Q. Ma, D. Raoux, and S. B'enazeth, Phys. Rev. B 48, 16332 (1993).
- 22. P. J'ov'ari, S.N. Yannopoulos, I. Kaban, A. Kalampounias, I. Lishchynskyy, B. Beuneu, O. Kostadinova, E. Welter, and A. Sch¨ops, J. Chem. Phys. 129, 214502 (2008).
- 23. О. Б. Циок, В. В. Бражкин, А. С. Тверьянович, Е. Бычков, ЖЭТФ 161(1), 65 (2022).
- 24. L. G. Khvostantsev, V. N. Slesarev, and V. V. Brazhkin, High Press. Res. 24, 371 (2004).
- 25. O. B. Tsiok, V. V. Bredikhin, V. A. Sidorov, and L. G. Khvostantsev, High Pressure Research 10, 523 (1992).
- 26. O. B. Tsiok, V. V. Brazhkin, A. G. Lyapin, and L. G. Khvostantsev, Phys. Rev. Lett. 80, 999 (1998).
- 27. V. V. Brazhkin, E. Bychkov, and O. B. Tsiok, Phys. Chem. B 120, 358 (2016).
- 28. В. В. Бражкин, Е. Бычков, А. С. Тверьянович, О.Б. Циок, ЖЭТФ 157, 679 (2020).
- 29. P. Bak, How Nature Works: the Science of Self-Organized Criticality, Springer-Verlag, New York Inc. (1996).