RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

Hall Effect in Doped Mott–Hubbard Insulator

PII
10.31857/S0044451023030136-1
DOI
10.31857/S0044451023030136
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 163 / Issue number 3
Pages
417-427
Abstract
We present theoretical analysis of Hall effect in doped Mott–Hubbard insulator, considered as a prototype of cuprate superconductor. We consider the standard Hubbard model within DMFT approximation. As a typical case we consider the partially filled (hole doping) lower Hubbard band. We calculate the doping dependence of both the Hall coefficient and Hall number and determine the value of carrier concentration, where Hall effect changes its sign. We obtain a significant dependence of Hall effect parameters on temperature. Disorder effects are taken into account in a qualitative way. We also perform a comparison of our theoretical results with some known experiments on doping dependence of Hall number in the normal state of YBCO and Nd-LSCO, demonstrating rather satisfactory agreement of theory and experiment. Thus the doping dependence of Hall effect parameters obtained within Hubbard model can be considered as an alternative to a popular model of the quantum critical point.
Keywords
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
5

References

  1. 1. Y. Iye, J.Phys.Chem. Solids 53, 1561 (1992).
  2. 2. F. F. Balakirev, J.B. Betts, A. Migliori, I. Tsukada, Y. Ando, and G. S. Boebinger, Phys.Rev. Lett. 101, 017004 (2009).
  3. 3. S. Badoux, W. Tabis, F. Laliberte, B. Vignolle, D. Vignolles, J. Beard, D.A. Bonn, W.N. Hardy, R. Liang, N. Doiron-Leyraud, L. Taillefer, and C. Proust, Nature 531, 210 (2016).
  4. 4. C. Collignon, S. Badoux, S.A.A. Afshar, B. Michon, F. Laliberte, O. Cyr-Choiniere, J.-S. Zhou, S. Licciardello, S. Wiedmann, N. Doiron-Leyraud, and L. Taillefer, Phys.Rev.B95, 224517 (2017).
  5. 5. C. Proust and L. Taillefer, Annu.Rev.Condens. Matter Phys. 10 409 (2019).
  6. 6. Th. Pruschke, M. Jarrell, and J.K. Freericks, Adv. Phys. 44, 187 (1995).
  7. 7. A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.Mod.Phys. 68, 13 (1996).
  8. 8. D. Vollhardt in: Lectures on the Physics of Strongly Correlated Systems XIV, eds. A. Avella and F. Mancini, AIP Conference Proceed. vol. 1297, AIP, Melville, New York (2010), p. 339; ArXiV: 1004.5069.
  9. 9. Э. З. Кучинский, И.А. Некрасов, М.В. Садовский, УФН 182, 345 (2012)
  10. 10. Phys.Usp. 55, 325 (2010).
  11. 11. G.Rohringer, H.Hafermann, A.Toschi, A.A. Katanin, A.E. Antipov, M. I. Katsnelson, A. I. Lichtenstein, A.N. Rubtsov, and K. Held. Rev.Mod. Phys. 90, 025003 (2018).
  12. 12. Э. З. Кучинский, Н.А. Кулеева, Д.И. Хомский, М.В. Садовский, Письма ЖЭТФ 115, 444 (2022)
  13. 13. JETP Lett. 115, 402 (2022).
  14. 14. R. Bulla, T.A. Costi, and T. Pruschke, Rev.Mod. Phys. 60, 395 (2008).
  15. 15. E. Z. Kuchinskii, I.A. Nekrasov, and M.V. Sadovskii, ЖЭТФ 133, 670 (2008)
  16. 16. JETP 106, 581 (2008).
  17. 17. D. I. Khomskii, Basic Aspects of the Quantum Theory of Solids, Cambridge University Press, NY (2010).
  18. 18. M.V. Sadovskii, I.A. Nekrasov, E. Z. Kuchinskii, Th. Pruschke, and V. I. Anisimov, Phys.Rev.B72, 155105 (2005).
  19. 19. D. Pelc, P. Popˇcevi'c, M. Poˇzek, M. Greven, and N. Bariˇsi'c, Sci.Adv. 5, eaau4538 (2019).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library