RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

Nonlinear Dynamics of a Heisenberg Ferromagnet on the Semiaxis

PII
10.31857/S0044451023030094-1
DOI
10.31857/S0044451023030094
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 163 / Issue number 3
Pages
375-386
Abstract
The nonlinear dynamics of a semi-infinite isotropic ferromagnet with partial spin pinning at the sample edge, as well as in the limiting cases of full spin pinning and in its absence, is investigated based on the Landau–Lifshitz model using the inverse scattering transform. Two types of solitons are predicted. The first of them represents magnetization oscillations with discrete frequencies, which are localized near the sample surface. The second type contains moving particle-like objects with deformable cores, which are elastically reflected from the sample boundary, whereas at large distances from the boundary they are transformed into the typical solitons of an extended ferromagnet. Peculiarities in collisions of solitons with the sample boundary are analyzed for various degrees of spin pinning on the surface. A set of new conservation laws is obtained, which guarantee the fulfillment of the required boundary conditions for solitons and ensure the localization of solitons near the sample surface or their reflection from it.
Keywords
Date of publication
15.03.2023
Year of publication
2023
Number of purchasers
0
Views
28

References

  1. 1. А. Б. Борисов, В. В. Киселев, Квазиодномерные магнитные солитоны, Физматлит, Москва (2014).
  2. 2. Г. В. Дрейден, А. В. Порубов, А. М. Самсонов, И. В. Семенова, ЖТФ 71, 1 (2001).
  3. 3. В. В. Киселев, А. А. Расковалов, ЖЭТФ 62, 693 (2022).
  4. 4. I. T. Habibullin, in Nonlinear World: IV Int. Workshop on Nonlinear and Turbulent Processes in Physics, ed. by V. G. Baryachtar et. el., World Scienti c Singapore (1989), Vol. 1, p. 130.
  5. 5. И. Т. Хабибуллин, ТМФ 86, 43 (1991).
  6. 6. A. S. Fokas, Commun. Math. Phys. 230, 1 (2002).
  7. 7. A. S. Fokas, Comm. Pure Appl. Math., V. LVIII., 639 (2005).
  8. 8. П. Н. Бибиков, В. О. Тарасов, ТМФ 79, 334 (1989).
  9. 9. V. O. Tarasov, Inverse Problems 7, 435 (1991).
  10. 10. A. S. Fokas, Physica D 35, 167 (1989).
  11. 11. Е. К. Склянин, Функциональный анализ и его приложения 21, 86 (1987).
  12. 12. Н. Г. Гочев, ФНТ 10, 615 (1984).
  13. 13. Л. Д. Фаддеев, Л. А. Тахтаджян, Гамильтонов подход в теории солитонов, Наука, Москва (1986).
  14. 14. A. M. Косевич, Е. А. Иванов, А. С. Ковалев, Нелинейные волны намагниченности. Динамические и топологические солитоны, Наукова думка, Киев (1983).
  15. 15. A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, Phys. Rep. 194, 117 (1990).
  16. 16. А. Б. Мигдал, Качественные методы в квантовой теории, Наука, Москва (1979).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library