RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

57Fe Mössbauer Effect Study of Y(Fe1 – xNix)2 Synthesized under High Pressure

PII
10.31857/S0044451023030069-1
DOI
10.31857/S0044451023030069
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 163 / Issue number 3
Pages
350-356
Abstract
The measurements of magnetic hyperfine fields (MHF), Hhf, and isomer shift, δ, in Y(Fe1 – xNix)2 intermetallic compounds (the MgCu2 structure type) synthesized at high pressure are performed. The MHF values that appear on 57Fe nuclei at a nickel concentration x below 20 at % practically do not change and are approximately equal to 22 T, and in the range from x = 0.4 to 0.98 they decrease linearly with an increase in the Ni concentration. However, linear extrapolation of the hyperfine field as a function of Ni concentration does not lead to its disappearance in YNi2. For YFe2, the rotation of the easy axis from the [101] direction to the [111] direction with increasing temperature is found. As the Ni concentration increases to x = 0.3 at a temperature of 5 K, the easy magnetization axis [101] is observed, and at x = 0.4 the axis changes direction to [100]. Based on the shape of the concentration dependence of the hyperfine field, it is assumed that during the crystallization of Y(Fe1 – xNix)2 under high pressure conditions, a magnetic moment exists on Ni ions. First-principles calculations of magnetic properties and hyperfine interactions are performed, which are consistent with experiment.
Keywords
Date of publication
15.03.2023
Year of publication
2023
Number of purchasers
0
Views
32

References

  1. 1. L. J. Parker, T. Atou, and J. V. Badding, Science 273, 95 (1996).
  2. 2. А. В. Цвященко, Л. Н. Фомичева, М. В. Магницкая и др., Письма в ЖЭТФ 68, 864 (1998).
  3. 3. A. V. Tsvyashchenko, L. N. Fomicheva, M. V. Magnitskaya et al., The Physics of Metals and Metallography 93, S59 (2002).
  4. 4. A. A. Adeleke and Y. Yao, J. Chem. Phys. 124, 4752 (2020).
  5. 5. F. Stein and A. Leineweber, J. Mater. Sci. 56, 5321 (2021).
  6. 6. C. Ritter, J. Phys.: Condens. Matter 1, 2765 (1989).
  7. 7. A. Posinger, M. Reissner, W. Steiner et al., J. Phys.: Condens. Matter 5, 7277 (1993).
  8. 8. V. Paul-Boncour, A. Lindbaum, M. Latroche et al., Intermetallics 14, 483 (2006).
  9. 9. M. Forker, P. de la Presa, and A. F. Pasquevich, J. Phys.: Condens. Matter 18, 253 (2005).
  10. 10. E. Gratz and A. S. Markosyan, J. Phys.: Condens. Matter 13, R385 (2001).
  11. 11. F. Z. Mohammad, S. Yehia, and S. Aly, Int. J. Phys. and Appl. 2, 135 (2010).
  12. 12. O. Myakush, V. Babizhetskyy, P. Myronenko et al., Chem. Met. Alloys 4, 152 (2011).
  13. 13. A. V. Tsvyashchenko, L. N. Fomicheva, and S. D. Antipov, J. Magn. Magn. Mater. 98, 285 (1991).
  14. 14. L. G. Khvostantsev, V. N. Slesarev, and V. V. Brazhkin, High Press. Res. 24, 371 (2004).
  15. 15. A. V. Tsvyashchenko, J. Less Comm. Met. 99, L9 (1984).
  16. 16. С. И. Рейман, Н. И. Рохлов, В. С. Шпинель и др., ЖЭТФ 86, 330 (1984).
  17. 17. А. С. Меченов, Регуляризованный метод наименьших квадратов, Изд-во Моск. ун-та, Москва (1988).
  18. 18. M. G. Luijpen, P. C. M. Gubbens, A. M. van der Kraan et al., Physica B+C 86-88, 141 (1977).
  19. 19. G. J. Bowden, D. St. P. Bunbury, A. P. Guimaraes et al., J. Phys. C 1, 1376 (1968).
  20. 20. K. H. J. Buschow, Rep. Progr. Phys. 40, 1179 (1977).
  21. 21. K. Itoh, K. Kanematsu, and K.-I. Kobayashi, J. Phys. Soc. Jpn 58, 4650 (1989).
  22. 22. M. J. Besnus, P. Bauer, and J. M. Genin, J. Phys. F 8, 191 (1978).
  23. 23. S. K. Arif, I. Sigalas, and D. S. T. P. Bunbury, Phys. Stat. Sol. (a) 41, 585 (1977).
  24. 24. A. M. van der Kraan and P. C. M. Gubbens, J. Phys. Colloques 35, C6-469 (1974).
  25. 25. R. M. Moon, W. C. Koehler, and J. Farrell, J. Appl. Phys. 36, 978 (1965).
  26. 26. O. Eriksson, B. Johansson, M. S. S. Brooks et al., Phys. Rev. B 40, 9519 (1989).
  27. 27. K. Yoshimura, Y. Yoshimoto, M. Mekata et al., J. Magn. Magn. Mater. 70, 147 (1987).
  28. 28. T. Goto, K. Fukamichi, T. Sakakibara et al., Sol. St.Comm. 72, 945 (1989).
  29. 29. A. V. Tsvyashchenko, L. N. Fomicheva, E. N. Shirani et al., Phys. Rev. B 55, 6377 (1997).
  30. 30. P. Blaha, K. Schwarz, F. Tran et al., J. Chem. Phys. 152, 074101 (2020).
  31. 31. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library