RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

Interaction of [Er(HL)(L)]·4CHCl3·H2O Single-Ion Magnet Complexes with Ferromagnetic Microparticles

PII
10.31857/S0044451023020086-1
DOI
10.31857/S0044451023020086
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 163 / Issue number 2
Pages
214-226
Abstract
A new method is developed to control the spin relaxation in single-molecular magnets (SMMs) in order to eliminate spin decoherence to the level acceptable for quantum computing at a relaxation frequency of about 102 Hz and a temperature of 2 K. A significant part of the SMMs has rapid magnetic relaxation proceeding through several parallel channels sensitive to the presence of an external magnetic field. Some of the relaxation channels in such materials (also called single-ion magnets (SIMs)) are suppressed using an electromagnet in macroscopic volumes of complexes. This is unacceptable when individual SIM complexes are used as qubits and forces us to look for ways to use a local magnetic field and other types of complex interactions in a specially selected environment, which provides the Zeeman interaction in the absence of an external field. We demonstrate that a composite material made of SIM complexes with Er3+ ions and ferromagnetic microparticles exhibits a remanent magnetization, which is sufficient to decrease the spin relaxation frequency in the volume. In magnitude, this effect competes with the well-known effect of hybridization of the orbitals of a complex during its interaction with a metallic surface. Therefore, the microstructuring of an array of complexes in a ferromagnetic matrix can be used to create local regions with a controlled magnetic relaxation frequency
Keywords
Date of publication
15.02.2023
Year of publication
2023
Number of purchasers
0
Views
34

References

  1. 1. M. Mannini, F. Pineider, P. Sainctavit et al., Nat. Mater. 8, 194 (2009).
  2. 2. R. Mitsuhashi, K. S. Pedersen, T. Ueda et al., Chem.Commun. 54, 8869 (2018).
  3. 3. M. Brzozowska, G. Handzlik, M. Zychowicz et al., Magnetochemistry 7, 125 (2021).
  4. 4. A. Zabala-Lekuona, J. M. Seco, and E. Colacio, Coord. Chem. Rev. 441, 213984 (2021).
  5. 5. M. N. Leuenberger and D. Loss, Nature 410, 789 (2001).
  6. 6. M. R. Wasielewski, M. D. E. Forbes, N. L. Frank et al., Nat. Rev. Chem. 4, 490 (2020).
  7. 7. A. Gaita-Ari no, F. Luis, S. Hill et al., Nat. Chem. 11, 301 (2019).
  8. 8. G. Serrano, L. Poggini, M. Briganti et al., Nat. Mater. 19, 546 (2020).
  9. 9. E. Dvoretskaya, A. Palii, O. Koplak et al., J. Phys. Chem. Solids 157, 110210 (2021).
  10. 10. J. D. Rinehart and J. R. Long, J. Am. Chem. Soc. 131, 12558 (2009).
  11. 11. M. Ren, S. S. Bao, R. A. S. Ferreirac et al., Chem.Commun. 50, 7621 (2014).
  12. 12. G. Albani, A. Calloni, M. S. Jagadeesh et al., J. Appl. Phys. 128, 035501 (2020).
  13. 13. A. Lodi Rizzini, C. Krull, T. Balashov et al., Phys. Rev. Lett. 107, 177205 (2011).
  14. 14. K. Kumar, O. Stefanczyk, S. Chorazy et al., Inorg. Chem. 58, 5677 (2019).
  15. 15. T. A. Bazhenova, I. A. Yakushev, K. A. Lyssenko et al., Magnetochemistry 6, 60 (2020).
  16. 16. J. T. Coutinho, L. C. J. Pereira, P. Martin-Ramos et al., Mater. Chem. Phys. 160, 429 (2015).
  17. 17. H. Q. Ye, Z. Li, Y. Peng et al., Nat. Mater. 13, 382 (2014).
  18. 18. R. Morgunov, A. Talantsev, E. Kunitsyna et al., IEEE Trans. Magn. 52, 1 (2016).
  19. 19. E. Lucaccini, L. Sorace, M. Perfetti et al., Chem.Commun. 50, 1648 (2014).
  20. 20. R. Jankowski, J. J. Zakrzewski, O. Surma et al., Inorg. Chem. Front. 6, 2423 (2019).
  21. 21. L. Mu�nzfeld, C. Schoo, S. Bestgen et al., Nat.Commun. 10, 1 (2019).
  22. 22. D. C. Izuogu, T. Yoshida, G. Cosquer et al., Chemistry A European J. 26, 6036 (2020).
  23. 23. I. A. Ku�hne, L. Ungur, K. Esien et al., Dalt. Trans. 48, 15679 (2019).
  24. 24. P. Shukla, S. Roy, D. Dolui et al., Eur. J. Inorg. Chem. 2020, 823 (2020).
  25. 25. J. Mayans, Q. Saez, M. Font-Bardia et al., Dalt. Trans. 48, 641 (2019).
  26. 26. Q. Zou, X. Da Huang, J. C. Liu et al., Dalt. Trans. 48, 2735 (2019).
  27. 27. K. S. Cole and R. H. Cole, J. Chem. Phys. 9, 341 (1941).
  28. 28. K. N. Shrivastava, Phys. Status Solidi 117, 437 (1983).
  29. 29. Y. S. Ding, K. X. Yu, D. Reta et al., Nat.Commun. 9, 1 (2018).
  30. 30. K. Diller, A. Singha, M. Pivetta et al., RSC Adv. 9, 34421 (2019).
  31. 31. G. Handzlik, M. Magott, M. Arczy nski et al., Dalt. Trans. 49, 11942 (2020).
  32. 32. H. Ogasawara, A. Kotani, R. Potze et al., Phys. Rev. B 44, 5465 (1991).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library