RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

Investigation of Josephson Contacts Pb0.6In0.4/KFe2As2 and KFe2As2/KFe2As2 and Order Parameter Symmetry Check

PII
10.31857/S0044451023020050-1
DOI
10.31857/S0044451023020050
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 163 / Issue number 2
Pages
180-188
Abstract
The characteristics of point Josephson contacts Pb0.6In0.4/KFe2As2 and KFe2As2/KFe2As2 have been studied. The temperature dependences of characteristic contact voltages VC(T) and the dependences of the first current step amplitudes in I–V characteristics on the power of 7.6-GHz electromagnetic radiation have been measured. It has been found that VC(T) curves for all contacts can be described in terms of the SIS*IS contact model (S, I, and S* stand for superconductor, insulator, and superconductor with a lower critical temperature, respectively) for superconductors with the s-symmetry of order parameter. It has been proved that the current step oscillation period as a function of microwave power can be exactly approximated with the resistive model of contact with IS = ICsin(φ). Obtained data are consistent with the normal s-symmetry of order parameter.
Keywords
Date of publication
15.02.2023
Year of publication
2023
Number of purchasers
0
Views
34

References

  1. 1. Y. Kamihara, H. Hiramatsu, M. Hirano et al., J. Amer. Chem. Soc. 128, 10012 (2006).
  2. 2. Y. Bang, G. R. Stewart et al., J. Phys.: Condens. Matter 29, 123003 (2017).
  3. 3. J. Hirschfeld, M. M. Korshunov, and I. I. Mazin, Rep. Progr. in Physics 74, 124508 (2011).
  4. 4. A. Barone, and G. Paterno. Physics and Applications of the Josephson E ect, Wiley, New York (1982).
  5. 5. B. Sperstad, J. Linder, and Asle Sudbo, Phys.Rev.B 80, 144507 (2009).
  6. 6. Z. Huang and X. Hu, Appl. Phys. Lett. 104, 162602 (2014).
  7. 7. S-Z. Lin, Phys. Rev. B 86, 014510 (2012).
  8. 8. Y. Ota, M. Machida, and T. Koyama, Phys. Rev. B 82, 140509R (2010).
  9. 9. Y. Ota, M. Machida, T. Koyama, and H. Matsumoto, Phys. Rev. Lett. 102, 237003 (2009).
  10. 10. Y. Yerin and A. N. Omelyanchouk, Low Temp. Phys. 43, 1013 (2017).
  11. 11. X. Zhang, Y. S. Oh, Y. Liu et al., Phys. Rev. Lett. 102, 147002 (2009).
  12. 12. X. Zhang, S. R. Saha, N. P. Butch et al., Appl. Phys. Lett. 95, 062510 (2009).
  13. 13. S. Schmidt, S. D¨oring, F. Schmidt et al., Appl. Phys. Lett. 97, 172504, (2010).
  14. 14. P. Seidel, Supercond. Sci. Technol. 24, 043001 (2011).
  15. 15. S. D¨oring, S. Schmidt, F. Schmidl, et al., Supercond. Sci. Technol. 25, 084020 (2012).
  16. 16. X. Zhang, B. Lee, S. Khim et al., Phys. Rev. B 85, 094521 (2012).
  17. 17. S. D¨oring, M. Monecke, S. Schmidt et al., J. Appl. Phys. 115, 083901 (2014).
  18. 18. V. V. Fisun, O. P. Balkashin, O. E. Kvitnitskaya et al., Fizika Nizkikh Temperatur 40, 1175 (2014).
  19. 19. A. V. Burmistrova, A. Devyatov, A. A. Golubov et al., Phys. Rev. B 91, 214501 (2015).
  20. 20. M. Tortello, V. A. Stepanov, X. Ding et al., J. Supercond. Novel Magn., 28, 679 (2016).
  21. 21. S. Schmidt, S. D¨oring, N. Hasan et al., Phys. Status Solidi B, 254, 1600165 (2017).
  22. 22. W. Tian, Y. Lv, Z. Xu et al., Supercond. Sci. Technol. 33, 025014 (2020).
  23. 23. В. А. Степанов, М. В. Голубков, ЖЭТФ 157, 245 (2020).
  24. 24. V. A. Stepanov, C. Lin, R. S. Gonnelli et al., Scienti c Reports 11, 23986 (2021).
  25. 25. T. Scheller, F. Mueller, R. Wendisch et al., Phys. Proc. 36, 48 (2012).
  26. 26. M. Yu. Kupriyanov, A. Brinkman, A. A. Golubov et al., Physica C 326-327, 16 (1999).
  27. 27. D. Cassel, G. Pickartz, M. Siegel et al., Physica C 350, 276 (2001).
  28. 28. A. A. Golubov, M. Yu. Kupriyanov, and E. Il'ichev, Rev. Mod. Phys. 76, 411 (2004).
  29. 29. V. Stanev, Supercond. Sci. Technol. 28, 014006 (2015).
  30. 30. Yong Liu, M. A. Tanatar, V. G. Kogan et al., Phys. Rev. B 87, 134513 (2013).
  31. 31. M. Rotter, M. Pangerl, M. Tegel et al., arXiv:0807.4096v2.
  32. 32. H. Luo, Z. Wang, H. Yang, P. Cheng et al., Supercond. Sci. Technol., 21, 125014 (2008).
  33. 33. F. F. Tafti, A. Juneau-Fecteau, M-E. Delage et al., Nature Phys. 9, 349 (2013).
  34. 34. B. Wang, K. Matsubayashi, J. Cheng et al., Phys. Rev. B 94, 020502(R) (2016).
  35. 35. T. Terashima, M. Kimata, H. Satsukawa et al., J. Phys. Soc. Jpn. 78, 063702 (2009).
  36. 36. K. Kihou, T. Saito, S. Ishida et al., J. Phys. Soc. Jpn. 79, 124713 (2010).
  37. 37. T. Terashima, M. Kimata, N. Kurita et al., J. Phys. Soc. Jpn. 79, 053702 (2010).
  38. 38. T. Terashima, N. Kurita, M. Kimata et al., Phys. Rev. B 87, 224512 (2013).
  39. 39. S. Backes, D. Guterding, H. O. Jeschke et al., New J. Phys. 16, 083025 (2014).
  40. 40. S. Maiti, M. M. Korshunov, A. V. Chubukov, Phys. Rev. B 85, 014511 (2012).
  41. 41. H. Fukazawa, T. Saito, Y. Yamada et al., J. Phys. Soc. Jpn. 80, sa118 (2011).
  42. 42. J.-Ph. Reid, M. A. Tanatar, A. Juneau-Fecteau et al., Phys. Rev. Lett. 109, 087001 (2012).
  43. 43. M. Abdel-Ha ez, S. Aswartham, S. Wurmehl et al., Phys. Rev. B 85, 134533 (2012).
  44. 44. F. Hardy, A. E. Bohmer, D. Aoki et al., Phys. Rev. Lett. 111, 027002 (2013).
  45. 45. K. Hashimoto, A. Sera n, S. Tonegawa et al., Phys. Rev. B 82, 014526 (2010).
  46. 46. D. Fang, X. Shi, Z. Du et al., Phys. Rev. B 92, 144513 (2015).
  47. 47. K. Okazaki, Y. Ota, Y. Kotani et al., Science 337, 1314 (2012).
  48. 48. Yu. G. Naidyuk, O. E. Kvitnitskaya, N. V. Gamayunova et al., Phys. Rev. B 90, 094505 (2014).
  49. 49. М.В. Рослова, Дисс. канд. хим. наук, МГУ, Москва (2014).
  50. 50. Y. Ota, K. Okazaki, Y. Kotani et al., Phys. Rev. B 89, 0811103 (2014).
  51. 51. N. Xu, P. Richard, X. Shi et al., Phys. Rev. B 88, 220508(R) (2013)
  52. 52. С. И. Веденеев, М. В. Голубков, Ю. И. Горина и др., ЖЭТФ 154, 844 (2018).
  53. 53. C. T. Rao, W. Dubeck, F. Rothwarf. Phys. Rev. B 7, 1866 (1973).
  54. 54. S. I. Vedeneev, A. G. M. Jansen, P. Samueli et al., Phys. Rev. B 49, 9823 (1994).
  55. 55. К. К. Лихарев. УФН 127, 185 (1979).
  56. 56. K. K. Likharev. Rev. Mod. Phys. 51, 101, (1979).
  57. 57. R. Prozorov and R. W. Giannetta, Supercond. Sci. Technol. 19, R41 (2006).
  58. 58. A. Brinkman, A. A. Golubov, and H. Rogalla et al., Phys. Rev. B 65, 180517(R) (2002).
  59. 59. C. Nappi, F. Romeo, E. Sarnelli et al., Phys. Rev. B 92, 224503 (2015).
  60. 60. A. Sasaki, S. Ikegaya, T. Habe et al., Phys. Rev. B 101, 185501 (2020).
  61. 61. A. A. Kalenyuk, E. A. Borodianskyi, A. A. Kordyuk et al., Phys. Rev. B 103, 214507 (2021).
  62. 62. P. Seidel, M. Siegel, E. Heinz, Physica C 180, 284 (1991).
  63. 63. F. Busse, R. Nebel, P. Herzog et al., Appl. Phys. Lett., 63, 1687 (1993).
  64. 64. R. L. Kautz, R. H. Ono, and C. D. Reintsema, Appl. Phys. Lett. 61, 342 (1992).
  65. 65. К. К. Лихарев, В. К. Семенов, Радиотехника и электроника 16, 2367 (1971).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library